Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4905454
1.
1.S. Baldelli, Nat Photonics 5(2), 7576 (2011).
http://dx.doi.org/10.1038/nphoton.2011.9
2.
2.X. J. Xie and X. G. Liu, Nat Mater 11(10), 842843 (2012).
http://dx.doi.org/10.1038/nmat3426
3.
3.P. Gerner, C. Reinhard, and H. U. Gudel, Chemistry 10(19), 47354741 (2004).
http://dx.doi.org/10.1002/chem.200400282
4.
4.F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, Acs Nano 4(6), 32543258 (2010).
http://dx.doi.org/10.1021/nn100244a
5.
5.F. Song, L. Han, H. Tan, J. Su, J. Yang, J.-g. Tian, G.-y. Zhang, Z.-x. Cheng, and H.-c. Chen, Optics Communications 259(1), 179186 (2006).
http://dx.doi.org/10.1016/j.optcom.2005.08.049
6.
6.B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, and Z. Q. Feng, Adv Mater 24(15), 19871993 (2012).
http://dx.doi.org/10.1002/adma.201200431
7.
7.H. Peng, M. I. Stich, J. Yu, L. N. Sun, L. H. Fischer, and O. S. Wolfbeis, Adv Mater 22(6), 716719 (2010).
http://dx.doi.org/10.1002/adma.200901614
8.
8.X. F. Wang, J. Zheng, Y. Xuan, and X. H. Yan, Opt Express 21(18), 2159621606 (2013).
http://dx.doi.org/10.1364/OE.21.021596
9.
9.P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, Appl Phys Lett 104(15), 014102 (2014).
http://dx.doi.org/10.1063/1.4861461
10.
10.P. Du, L. Luo, W. Li, and Q. Yue, Journal of Applied Physics 116(1), 152902 (2014).
11.
11.J. Chen and J. X. Zhao, Sensors (Basel) 12(3), 24142435 (2012).
http://dx.doi.org/10.3390/s120302414
12.
12.H. Zou, J. Li, X. Wang, D. Peng, Y. Li, and X. Yao, Optical Materials Express 4(8), 15451554 (2014).
http://dx.doi.org/10.1364/OME.4.001545
13.
13.D. Peng, H. Zou, C. Xu, X. Wang, and X. Yao, Journal of Alloys and Compounds 552(0), 463468 (2013).
http://dx.doi.org/10.1016/j.jallcom.2012.10.194
14.
14.M. Challenor, P. J. Gong, D. Lorenser, M. Fitzgerald, S. Dunlop, D. D. Sampson, and K. S. Iyer, Acs Appl Mater Inter 5(16), 78757880 (2013).
http://dx.doi.org/10.1021/am401837h
15.
15.M. A. R. C. Alencar, G. S. Maciel, C. B. de Araújo, and A. Patra, Appl Phys Lett 84(23), 47534755 (2004).
http://dx.doi.org/10.1063/1.1760882
16.
16.P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. M. Neto, and A. S. B. Sombra, Appl Phys Lett 73(5), 578580 (1998).
http://dx.doi.org/10.1063/1.121861
17.
17.F. Lenz, A. Hryciw, R. DeCorby, and A. Meldrum, Appl Phys Lett 95(9), (2009).
18.
18.X. D. Wang, O. S. Wolfbeis, and R. J. Meier, Chemical Society reviews 42(19), 78347869 (2013).
http://dx.doi.org/10.1039/c3cs60102a
19.
19.L. Feng, B. Y. Lai, J. Wang, G. Q. Du, and Q. A. Su, J Lumin 130(12), 24182423 (2010).
http://dx.doi.org/10.1016/j.jlumin.2010.08.005
20.
20.T. Kikuchi, A. Watanabe, and K. Uchida, Mater Res Bull 12(3), 299304 (1977).
http://dx.doi.org/10.1016/0025-5408(77)90148-9
21.
21.Z. Peng, D. Yan, Q. Chen, D. Xin, D. Liu, D. Xiao, and J. Zhu, Current Applied Physics 14(12), 18611866 (2014).
http://dx.doi.org/10.1016/j.cap.2014.10.011
22.
22.H. Zou, J. Li, X. Wang, D. Peng, Y. Li, and X. Yao, Optical Materials Express 4(8), 15451554 (2014).
http://dx.doi.org/10.1364/OME.4.001545
23.
23.X. Hui, D. Peng, H. Zou, J. Li, Q. Cao, Y. Li, X. Wang, and X. Yao, Ceramics International 40(8, Part A), 1247712483 (2014).
http://dx.doi.org/10.1016/j.ceramint.2014.04.102
24.
24.D. Peng, H. Zou, C. Xu, X. Wang, X. Yao, J. Lin, and T. Sun, AIP Advances 2(4), 042187-042187-042110.
25.
25.E. Subbarao, Journal of Physics and Chemistry of Solids 23(6), 665676 (1962).
http://dx.doi.org/10.1016/0022-3697(62)90526-7
26.
26.H. Zou, X. Hui, X. Wang, D. Peng, J. Li, Y. Li, and X. Yao, Journal of Applied Physics 114(22), 073103 (2013).
http://dx.doi.org/10.1063/1.4818793
27.
27.X. Gao, X.-H. Wang, J.-J. Xing, H. Gu, F.-Q. Zhang, and Y.-X. Li, Journal of Inorganic Materials 28(5), 561565 (2013).
http://dx.doi.org/10.3724/SP.J.1077.2013.12716
28.
28.A. Snedden, D. O. Charkin, V. A. Dolgikh, and P. Lightfoot, Journal of Solid State Chemistry 178(1), 180184 (2005).
http://dx.doi.org/10.1016/j.jssc.2004.08.021
29.
29.Z. G. Yi, Y. X. Li, Q. B. Yang, and Q. R. Yin, Ceramics International 34(4), 735739 (2008).
http://dx.doi.org/10.1016/j.ceramint.2007.09.016
30.
30.C. Shao, Y. Lu, D. Wang, and Y. Li, Journal of the European Ceramic Society 32(14), 37813789 (2012).
http://dx.doi.org/10.1016/j.jeurceramsoc.2012.04.048
31.
31.Y.-Q. LU and Y.-X. LI, Journal of Advanced Dielectrics 1(03), 269288 (2011).
http://dx.doi.org/10.1142/S2010135X11000409
32.
32.H. Chen, B. Yang, Y. Sun, M. Zhang, Y. Sui, Z. Zhang, and W. Cao, Journal of Luminescence 131(12), 25742578 (2011).
http://dx.doi.org/10.1016/j.jlumin.2011.06.045
33.
33.H.-Z. Chen, B. Yang, Y. Sun, M.-F. Zhang, Z. Wang, R. Zhang, Z.-G. Zhang, and W.-W. Cao, Chinese Physics Letters 28(8), 087804 (2011).
http://dx.doi.org/10.1088/0256-307X/28/8/087804
34.
34.S. Obregón and G. Colón, Applied Catalysis B: Environmental 140-141, 299305 (2013).
http://dx.doi.org/10.1016/j.apcatb.2013.04.014
35.
35.N. Fan, H. Hou, Q. Feng, Y. Li, Y. Chen, B. Zhao, and G. Wang, Chinese Journal of Luminescence 33(3), 263268 (2012).
http://dx.doi.org/10.3788/fgxb20123303.0263
36.
36.S. Hao, G. Chen, and C. Yang, Theranostics 3(5), 331345 (2013).
http://dx.doi.org/10.7150/thno.5305
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4905454
Loading
/content/aip/journal/adva/4/12/10.1063/1.4905454
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4905454
2014-12-31
2016-09-26

Abstract

The Er3+ doped BiTiNbWO ceramics have been synthesized using conventional solid-state reaction techniques. The crystal structure, ferroelectric properties, UC emission properties and especially the temperature sensing behaviors were systematically studied. With increasing Er3+ content, the investigation of XRD pattern, the ferroelectric loop and the UC emission indicated that the Er3+ ions dopants preferentially substituted the A sites of BiTiNbO and then BiWO. Based on fluorescence intensity ratio (FIR) technique, the observed results implied the ceramics were promising candidates for temperature sensors in the temperature range of 175 K −550 K. More importantly, this study provided a contrast of temperature sensitivity between emission from the same part (BiTiNbO) in bismuth layered-structure and emission from the different part (BiTiNbO and BiWO) in bismuth layered-structure for the first time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4905454.html;jsessionid=0_X7JCMDFDeFWJnwnBnzTBD6.x-aip-live-06?itemId=/content/aip/journal/adva/4/12/10.1063/1.4905454&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4905454&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4905454'
Right1,Right2,Right3,