Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Krč, M. Zeman, O. Kluth, F. Smole, and M. Topič, Thin Solid Films 426, 296 (2003).
2.V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, Sol. Energ. Mat. Sol. C. 112, 182 (2013).
3.J. Müller, B. Rech, J. Springer, and M. Vanecek, Sol. Energy 77, 917 (2004).
4.M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, Sol. Energ. Mat. Sol. C. 119, 94 (2013).
5.C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Ciu, and C. Ballif, ACS Nano 6, 2790 (2012).
6.W. Beyer, J. Hüpkes, and H. Stiebig, Thin Solid Films 516, 147 (2007).
7.A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, Opt. Express 20, A385 (2012).
8.O. Isabella, J. Krč, and M. Zeman, Appl. Phys. Lett. 97, 101106 (2010).
9.R. W. Miles, G. Zoppi, and I. Forbes, Mater. Today 10, 20 (2007).
10.M. Xu, A. J. H. Wachters, J. van Deelen, M. C. M. Mourad, and P. J. P. Buskens, Opt. Express 22, A425 (2014).
11.J. H. Shin, K. S. Han, and H. Lee, Prog. Photovolt: Res Appl. 19, 339 (2011).
12.T. Senn, O. Kutz, C. Weniger, J. Li, M. Schoengen, H. Löchel, J. Wolf, P. Göttert, and B. Löchel, J. Vac. Sci. Technol. B 29, 061601 (2011).
13.S. Y. Kuo, M. Y. Hsieh, H. V. Han, F. I. Lai, T. Y. Chuang, P. Yu, C. C. Lin, and H. C. Kuo, Optics Express 22(3), 2860 (2014).
14.M. Burghoorn, D. Roosen-Melsen, J. de Riet, S. Sabik, Z. Vroon, I. Yakimets, and P. Buskens, Materials 6, 3710 (2013).
15.H. Schmid and B. Michel, Macromolecules 33, 3042 (2000).
16.A. Kuypers, R. Knaapen, M. Theelen, M. Meuris, M. van der Vleuten, and W. Zijlmans, Photovoltaics International 20, 63 (2013).
17.K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, Thin Solid Films 516, 7167 (2008).
18.K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, Sol. Energ. Mat. Sol. C. 95, 288 (2011).
19.N. C. Linn, C.-H. Sun, P. Jiang, and B. Jiang, Appl. Phys. Lett. 91, 101108 (2007).
20.A. Čampa, J. Krč, J. Malström, M. Edoff, F. Smole, and M. Topič, Thin Solid Films 515, 5968 (2007).

Data & Media loading...


Article metrics loading...



Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density () and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the and efficiency of CIGS solar cells with an absorber layer thickness () of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO ( = 1.792 . = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in with decreasing was observed. , the increase in can be fully explained by the reduction in reflection, and we did not observe any increase in based on an increased photon path length.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd