Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/2/10.1063/1.4864750
1.
1. H. Wang, S. Baek, J. Song, J. Lee, and S. Lim, Nanotechnology 19, 075607 (2008).
http://dx.doi.org/10.1088/0957-4484/19/7/075607
2.
2. Y. C. Lee, S. Y. Hu, W. Water, K. K. Tiong, Z. C. Feng, Y. T. Chen, J. C. Huang, J. W. Lee, C. C. Huang, J. L. Shen, and M. H. Cheng, J. Lumin. 129, 148 (2009).
http://dx.doi.org/10.1016/j.jlumin.2008.09.003
3.
3. Y. X. Liu, Y. C. Liu, D. Z. Shen, G. Z. Zhong, X. W. Fan, X. G. Kong, R. Mu, and D. O. Henderson, J. Cryst. Growth 240, 152 (2002).
http://dx.doi.org/10.1016/S0022-0248(02)00843-6
4.
4. B. P. Zhang, K. Wakatsuki, N. T. Binh, N. Usami, and Y. Segawa, Thin Solid Films 449, 12 (2004).
http://dx.doi.org/10.1016/S0040-6090(03)01466-4
5.
5. A. R. Kaul, O. Y. Gorbenko, A. N. Botev, and L. I. Burova, Superlattice Microst. 38, 272 (2005).
http://dx.doi.org/10.1016/j.spmi.2005.08.004
6.
6. H. Q. Le, S. K. Lim, G. K. L. Goh, S. J. Chua, N. S. S. Ang, and W. Liu, Appl. Phys. B 100, 705 (2010).
http://dx.doi.org/10.1007/s00340-010-4190-8
7.
7. X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, and H. Ma, J. Cryst. Growth 274, 474 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.10.037
8.
8. I. C. Robin, J. Appl. Phys. 111, 084311 (2012).
http://dx.doi.org/10.1063/1.4705370
9.
9. S. K. Mohanta, S. Tripathy, X. H. Zhang, D. C. Kim, C. B. Soh, A. M. Yong, W. Liu, and H. K. Cho, Appl. Phys. Lett. 94, 041901 (2009).
http://dx.doi.org/10.1063/1.3074366
10.
10. R. Schneider, M. Schirra, A. Reiser, G. M. Prinz, W. Limmer, R. Sauer, K. Thonke, J. Biskupek, and U. Kaiser, Appl. Phys. Lett. 92, 131905 (2008).
http://dx.doi.org/10.1063/1.2905284
11.
11. Q. Yang, Y. Saeki, S. Izumi, T. Nukui, A. Tackeuchi, A. Ishida, and H. Tatsuoka, Appl. Surf. Sci. 256, 6928 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.04.049
12.
12. C. Y. Liu, B. P. Zhang, N. T. Binh, K. Wakatsuki, and Y. Segawa, J. Cryst. Growth 290, 314 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.12.071
13.
13. M. T. Htay, M. Itoh, Y. Hashimoto, and K. Ito, Jpn. J. Appl. Phys. 47, 541 (2008).
http://dx.doi.org/10.1143/JJAP.47.541
14.
14. B. K. Sharma, N. Khare, and D. Haranath, Solid State Commun. 150, 2341 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.10.002
15.
15. Q. X. Zhao, L. L. Yang, M. Willander, B. E. Sernelius, and P. O. Holtz, J. Appl. Phys. 104, 073526 (2008).
http://dx.doi.org/10.1063/1.2991151
16.
16. G. Z. Xing, G. C. Xing, M. J. Li, E. J. Sie, D. D. Wang, A. Sulistio, Q. L. Ye, C. H. A. Huan, T. Wu, and T. C. Sum, Appl. Phys. Lett. 98, 102105 (2011).
http://dx.doi.org/10.1063/1.3558912
17.
17. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
18.
18. R. Dingle, Phys. Rev. Lett. 23, 579 (1969).
http://dx.doi.org/10.1103/PhysRevLett.23.579
19.
19. G. Z. Xing, D. D. Wang, B. Yao, A. Q. Lloyd Foong Nien, and Y. S. Yan, Chem. Phys. Lett. 515, 132 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.09.007
20.
20. D. Lagarde, A. Balocchi, P. Renucci, H. Carrère, F. Zhao, T. Amand, X. Marie, Z. X. Mei, X. L. Du, and Q. K. Xue, Phys. Rev. B 78, 033203 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.033203
21.
21. H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, Appl. Phys. Lett. 102, 013109 (2013).
http://dx.doi.org/10.1063/1.4774002
22.
22. F. Z. Wang, H. P. He, Z. Z. Ye, and L. P. Zhu, J. Appl. Phys. 98, 084301 (2005).
http://dx.doi.org/10.1063/1.2089164
23.
23. X. D. Yang, Z. Y. Xu, Z. Sun, B. Q. Sun, L. Ding, F. Z. Wang, and Z. Z. Ye, J. Appl. Phys. 99, 046101 (2006).
http://dx.doi.org/10.1063/1.2171779
24.
24. A. B. Slimane, A. Najar, R. Elafandy, D. P. San-Roman-Alerigi, D. Anjum, T. K. Ng, and B. S. Ooi, Nanoscale Res. Lett. 8, 342 (2013).
http://dx.doi.org/10.1186/1556-276X-8-342
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/2/10.1063/1.4864750
Loading
/content/aip/journal/adva/4/2/10.1063/1.4864750
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/2/10.1063/1.4864750
2014-02-04
2016-12-08

Abstract

The ultraviolet photoluminescence of ZnO/ZnGaO composite layer grown by the thermal oxidation of ZnS with gallium was investigated by the time-resolved photoluminescence as a function of measuring temperature and excitation power. With increase of excitation power, the D0X emission is easily saturated than the DAP emission from ZnO/ZnGaO composite layer, and which is dramatically enhanced as compared with that from pure ZnO layer grown without gallium. The radiative recombination process with ultra-long lifetime controlled the carrier recombination of ZnO/ZnGaO composite layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/2/1.4864750.html;jsessionid=fsB2Wg7nQYjv4jkwXi_idZez.x-aip-live-02?itemId=/content/aip/journal/adva/4/2/10.1063/1.4864750&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/2/10.1063/1.4864750&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/2/10.1063/1.4864750'
Right1,Right2,Right3,