Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Wang, S. Baek, J. Song, J. Lee, and S. Lim, Nanotechnology 19, 075607 (2008).
2. Y. C. Lee, S. Y. Hu, W. Water, K. K. Tiong, Z. C. Feng, Y. T. Chen, J. C. Huang, J. W. Lee, C. C. Huang, J. L. Shen, and M. H. Cheng, J. Lumin. 129, 148 (2009).
3. Y. X. Liu, Y. C. Liu, D. Z. Shen, G. Z. Zhong, X. W. Fan, X. G. Kong, R. Mu, and D. O. Henderson, J. Cryst. Growth 240, 152 (2002).
4. B. P. Zhang, K. Wakatsuki, N. T. Binh, N. Usami, and Y. Segawa, Thin Solid Films 449, 12 (2004).
5. A. R. Kaul, O. Y. Gorbenko, A. N. Botev, and L. I. Burova, Superlattice Microst. 38, 272 (2005).
6. H. Q. Le, S. K. Lim, G. K. L. Goh, S. J. Chua, N. S. S. Ang, and W. Liu, Appl. Phys. B 100, 705 (2010).
7. X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, and H. Ma, J. Cryst. Growth 274, 474 (2005).
8. I. C. Robin, J. Appl. Phys. 111, 084311 (2012).
9. S. K. Mohanta, S. Tripathy, X. H. Zhang, D. C. Kim, C. B. Soh, A. M. Yong, W. Liu, and H. K. Cho, Appl. Phys. Lett. 94, 041901 (2009).
10. R. Schneider, M. Schirra, A. Reiser, G. M. Prinz, W. Limmer, R. Sauer, K. Thonke, J. Biskupek, and U. Kaiser, Appl. Phys. Lett. 92, 131905 (2008).
11. Q. Yang, Y. Saeki, S. Izumi, T. Nukui, A. Tackeuchi, A. Ishida, and H. Tatsuoka, Appl. Surf. Sci. 256, 6928 (2010).
12. C. Y. Liu, B. P. Zhang, N. T. Binh, K. Wakatsuki, and Y. Segawa, J. Cryst. Growth 290, 314 (2006).
13. M. T. Htay, M. Itoh, Y. Hashimoto, and K. Ito, Jpn. J. Appl. Phys. 47, 541 (2008).
14. B. K. Sharma, N. Khare, and D. Haranath, Solid State Commun. 150, 2341 (2010).
15. Q. X. Zhao, L. L. Yang, M. Willander, B. E. Sernelius, and P. O. Holtz, J. Appl. Phys. 104, 073526 (2008).
16. G. Z. Xing, G. C. Xing, M. J. Li, E. J. Sie, D. D. Wang, A. Sulistio, Q. L. Ye, C. H. A. Huan, T. Wu, and T. C. Sum, Appl. Phys. Lett. 98, 102105 (2011).
17. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
18. R. Dingle, Phys. Rev. Lett. 23, 579 (1969).
19. G. Z. Xing, D. D. Wang, B. Yao, A. Q. Lloyd Foong Nien, and Y. S. Yan, Chem. Phys. Lett. 515, 132 (2011).
20. D. Lagarde, A. Balocchi, P. Renucci, H. Carrère, F. Zhao, T. Amand, X. Marie, Z. X. Mei, X. L. Du, and Q. K. Xue, Phys. Rev. B 78, 033203 (2008).
21. H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, Appl. Phys. Lett. 102, 013109 (2013).
22. F. Z. Wang, H. P. He, Z. Z. Ye, and L. P. Zhu, J. Appl. Phys. 98, 084301 (2005).
23. X. D. Yang, Z. Y. Xu, Z. Sun, B. Q. Sun, L. Ding, F. Z. Wang, and Z. Z. Ye, J. Appl. Phys. 99, 046101 (2006).
24. A. B. Slimane, A. Najar, R. Elafandy, D. P. San-Roman-Alerigi, D. Anjum, T. K. Ng, and B. S. Ooi, Nanoscale Res. Lett. 8, 342 (2013).

Data & Media loading...


Article metrics loading...



The ultraviolet photoluminescence of ZnO/ZnGaO composite layer grown by the thermal oxidation of ZnS with gallium was investigated by the time-resolved photoluminescence as a function of measuring temperature and excitation power. With increase of excitation power, the D0X emission is easily saturated than the DAP emission from ZnO/ZnGaO composite layer, and which is dramatically enhanced as compared with that from pure ZnO layer grown without gallium. The radiative recombination process with ultra-long lifetime controlled the carrier recombination of ZnO/ZnGaO composite layer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd