Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/2/10.1063/1.4866445
1.
1. K. Yamane, M. Ueno, H. Furuya, N. Okada, and K. Tadatomo, J. Cryst. Growth 358, 1 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.07.038
2.
2. A. Guillén-Cervantes, Z. Rivera-Álvarez, M. López-López, A. Ponce-Pedraza, C. Guarneros, and V. M. Sánchez-Reséndiz, Appl. Surf. Sci. 258, 1267 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.09.089
3.
3. D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 67, 154 (1995).
http://dx.doi.org/10.1063/1.114486
4.
4. M. Kumar, B. Roul, T. N. Bhat, M. K. Rajpalke, and S. B. Krupanidhi, Appl. Phys. Exp. 5, 085202 (2012).
http://dx.doi.org/10.1143/APEX.5.085202
5.
5. R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K. A. Jones, A. A. Iliadis, M. A. Khan, and J. W. Yang, Appl. Phys. Lett. 71, 102 (1997).
http://dx.doi.org/10.1063/1.119441
6.
6. S. S. Kushvaha, M. S. Kumar, K. K. Maurya, M. K. Dalai, and N. D. Sharma, AIP Adv. 3, 092109 (2013).
http://dx.doi.org/10.1063/1.4821276
7.
7. D. M. Hofmann, D. Kovalev, G. Steude, B. K. Meyer, A. Hofmann, L. Eckey, R. Heitz, T. Detchprom, H. Amano, and I. Akasaki, Phys. Rev. B 52, 16702 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.16702
8.
8. G. D. Chen, M. Smith, J. Y. Lin, H. X. Jiang, M. A. Khan, and C. J. Sun, Appl. Phys. Lett. 67, 1653 (1995).
http://dx.doi.org/10.1063/1.115046
9.
9. C. Adelmann, J. Brault, D. Jalabert, P. Gentile, H. Mariette, G. Mula, and B. Daudin, J. Appl. Phys. 91, 9638 (2002).
http://dx.doi.org/10.1063/1.1471923
10.
10. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, J. Appl. Phys. 86, 3721 (1999).
http://dx.doi.org/10.1063/1.371242
11.
11. M. A. Moram, C. S. Ghedia, D. V. S. Rao, J. S. Barnard, Y. Zhang, M. J. Kappers, and C. J. Humphreys, J. Appl. Phys. 106, 073513 (2009).
http://dx.doi.org/10.1063/1.3225920
12.
12. H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, Appl. Phys. Lett. 73, 821 (1998).
http://dx.doi.org/10.1063/1.122012
13.
13. B. Heying, I. Smorchkova, C. Poblenz, C. Elsass, P. Fini, S. DenBaars, U. Mishra, and J. S. Speck, Appl. Phys. Lett. 77, 2885 (2000).
http://dx.doi.org/10.1063/1.1322370
14.
14. G. Koblmuller, F. Reurings, F. Tuomisto, and J. S. Speck, Appl. Phys. Lett. 97, 191915 (2010).
http://dx.doi.org/10.1063/1.3514236
15.
15. J. J. M. Law, E. T. Yu, G. Koblmuller, F. Wu, and J. S. Speck, Appl. Phys. Lett. 96, 102111 (2010).
http://dx.doi.org/10.1063/1.3360227
16.
16. W. Grieshaber, E. F. Schubert, I. D. Goepfert, R. F. Karlicek Jr., M. J. Schurman, and C. Tran, J. Appl. Phys. 80, 4615 (1996).
http://dx.doi.org/10.1063/1.363443
17.
17. D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, and Y. Fukuda, J. Appl. Phys. 90, 4219 (2001).
http://dx.doi.org/10.1063/1.1402966
18.
18. E. J. Tarsa, B. Heying, X. H. Wu, P. Fini, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 82, 5472 (1997).
http://dx.doi.org/10.1063/1.365575
19.
19. B. Heying, E. J. Tarsa, C. R. Elsass, P. Fini, S. P. DenBaars, and J. S. Speck, J. Appl. Phys. 85, 6470 (1999).
http://dx.doi.org/10.1063/1.370150
20.
20. V. Darakchieva, B. Monemar, and A. Usui, Appl. Phys. Lett. 91, 031911 (2007).
http://dx.doi.org/10.1063/1.2753122
21.
21. S. Fernández-Garrido, G. Koblmüller, E. Calleja, and J. S. Speck, J. Appl. Phys. 104, 033541 (2008).
http://dx.doi.org/10.1063/1.2968442
22.
22. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Phys. Rev. B 54, 17745 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17745
23.
23. L. Macht, J. L. Weyher, A. Grzegorczyk, and P. K. Larsen, Phys. Rev. B 71, 073309 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.073309
24.
24. H. C. Yang, T. Y. Lin, and Y. F. Chen, Phys. Rev. B 62, 12593 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.12593
25.
25. M. A. Reshchikov and R. Y. Korotkov, Phys. Rev. B 64, 115205 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.115205
26.
26. D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, Phys. Rev. Lett. 110, 087404 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.087404
27.
27. M. H. Kim, Y. C. Bang, N. Man. Park, C. J. Choi, T. Y. Seong, and S. J. Park, Appl. Phys. Lett. 78, 2858 (2001).
http://dx.doi.org/10.1063/1.1371539
28.
28. J. Cao, D. Pavlidis, A. Eisenbach, A. Philippe, C. B. Chevallier, and G. Guillot, Appl. Phys. Lett. 71, 3880 (1997).
http://dx.doi.org/10.1063/1.120532
29.
29. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, J. Appl. Phys. 79, 2784 (1996).
http://dx.doi.org/10.1063/1.361110
30.
30. R. A. Street, Phys. Rev. B 21, 5775 (1980).
http://dx.doi.org/10.1103/PhysRevB.21.5775
31.
31. M. Omari, A. Gupta, and N. Kouklin, J. Appl. Phys. 108, 024315 (2010).
http://dx.doi.org/10.1063/1.3462432
32.
32. A. Hazarika, A. Layek, S. De, A. Nag, S. Debnath, P. Mahadevan, A. Chowdhury, and D. D. Sarma, Phys. Rev. Lett. 110, 267401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.267401
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/2/10.1063/1.4866445
Loading
/content/aip/journal/adva/4/2/10.1063/1.4866445
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/2/10.1063/1.4866445
2014-02-18
2016-12-10

Abstract

We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001) substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 108 cm−2 at 750 °C) than that of the low temperature grown sample (1.1 × 109 cm−2 at 730 °C). A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/2/1.4866445.html;jsessionid=KaUes_lsQkWzzXv6ZKvamo8K.x-aip-live-03?itemId=/content/aip/journal/adva/4/2/10.1063/1.4866445&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/2/10.1063/1.4866445&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/2/10.1063/1.4866445'
Right1,Right2,Right3,