Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. A. F. Vaz and J. A. C. Bland, J. Appl. Phys. 89, 7374 (2001).
2. H. W. Zhao, Y. Z. Wu, C. Won, F. Toyoma, and Z. Q. Qiu, Phys. Rev. B 66, 104402 (2002).
3. W. Pan, Y.-T. Shih, K.-L. Lee, W.-H. Shen, C.-W. Tsai, D.-H. Wei, Y.-L. Chan, and H.-C. Chang, J. Appl. Phys. 111, 07C113 (2012).
4. W. Pan, Y.-T. Shih, and Z.-Z. Wu, J. Appl. Phys. 109, 07C112 (2011).
5. W. Pan, Y.-T. Shih, K.-L. Lee, W.-H. Shen, Z.-Z. Wu, and C.-C. Tsai, IEEE Trans. Magn. 47, 3883 (2011).
6. Y.-T. Shih, W.-H. Shen, K.-L. Lee, and W. Pan, AIP Advances 4, 017132 (2014).
7. M. Todorovic, S. Schultz, J. Wong, and A. Scherer, Appl. Phys. Lett. 74, 2516 (1999).
8. D. A. Thompson and J. S. Best, IBM Journal of Research and Development 44, 311 (2000).
9. J. Lohau, A. Moser, C. T. Rettner, M. E. Best, and B. D. Terris, Appl. Phys. Lett. 78, 990 (2001).
10. Y. Cui, Z. Zhong, D. Wang, U. Wang, and C. M. Lieber, Nano Lett. 3, 149 (2002).
11. S. D. Bader, Surf. Sci. 500, 172 (2002).
12. T. Nakagawa, H. Watanabe, and T. Yokoyama, Phys. Rev. B 71, 235403 (2005).
13. S. D. Bader, Rev. Mod. Phys. 78, 1 (2006).
14. S. N. Piramanayagam, J. Appl. Phys. 102, 011301 (2007).
15. H. Kim, H.-B.-R. Lee, and W.-J. Maeng, Thin Solid Films 517, 2563 (2009).
16. J. Kools, IEEE Trans. Magn. 32, 3165 (1996).
17. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
18. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
19. I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
20. J. Nogués, V. L. J. Sorta, V. Skumryev, S. S. nach, J. M. noz, and M. Baró, Phys. Rep. 422, 65 (2005).
21. H. L. Meyerheim, D. Sander, R. Popescu, W. Pan, I. Popa, and J. Kirschner, Phys. Rev. Lett. 99, 116101 (2007).
22. D. Pescia, G. Zampieri, M. Stampanoni, G. L. Bona, R. F. Willis, and F. Meier, Phys. Rev. Lett. 58, 933 (1987).
23. M. Ronay and P. Nordlander, Phys. Rev. B 35, 9403 (1987).
24. K. Baberschke and M. Farle, J. Appl. Phys. 81, 5038 (1997).
25. J. F. Ding, Y. F. Tian, W. J. Hu, W. N. Lin, and T. Wu, Appl. Phys. Lett. 102, 032401 (2013).
26. Y. F. Tian, J. F. Ding, W. N. Lin, Z. H. Chen, A. David, M. he, W. J. Hu, L. Chen, and T. Wu, Sci. Rep. 3, 1094 (2013).
27. A. L. Kobrinskii, A. M. Goldman, M. Varela, and S. J. Pennycook, Phys. Rev. B 79, 094405 (2009).
28. N. Moutis, C. Christides, I. Panagiotopoulos, and D. Niarchos, Phys. Rev. B 64, 094429 (2001).
29. J. F. Ding, O. I. Lebedev, S. Turner, Y. F. Tian, W. J. Hu, J. W. Seo, C. Panagopoulos, W. Prellier, G. V. Tendeloo, and T. Wu, Phys. Rev. B 87, 054428 (2013).
30. W. Pan, N.-Y. Jih, C.-C. Kuo, and M.-T. Lin, J. Appl. Phys. 95, 7297 (2004).
31. P. J. van der Zaag, Y. Ijiri, J. A. Borchers, L. F. Feiner, R. M. Wolf, J. M. Gaines, R. W. Erwin, and M. A. Verheijen, Phys. Rev. Lett. 84, 6102 (2000).

Data & Media loading...


Article metrics loading...



We estimate the thickness and ordering temperature of an antiferromagnetic and passivation surface oxide through exchange bias coupling. The surface NiO, which is generated through the exposure of a Ni/Cu(001) surface to oxygen, is taken as a model system on which to perform the estimation. Since no exchange bias is found in the surface NiO/Ni/Cu(001), we have built a sandwich structure of NiO/n ML Ni/10 ML Co/Cu(001) to measure the n dependence of exchange bias. With ⩽ 2, a large exchange bias field is found above 300 K, which could be due to the direct contact between the oxides and the Co layer. With 3 ⩽ ⩽ 6, a smaller exchange bias field is found with a blocking temperature of 190 K. This implies that the thickness of NiO is, at most, 3 ML. Discovering the thickness and ordering temperature of the surface NiO provides us to explore the potential applications by using surface NiO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd