Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Y. Hsieh, B. W. Lin, H. J. Cho, B. M. Wang, and Y. S. Wu, ECS J. Solid State Sci. Technol. 1, Q35 (2012).
2. J. J. Wierer, Jr., A. David, and M. M. Megens, Nat. Photonics 3, 163 (2009).
3. T. B. Wei, Q. F. Kong, J. X. Wang, J. Li, Y. P. Zeng, G. H. Wang, J. M. Li, Y. X. Liao, and F. T. Yi, Opt. Express 19, 1065 (2011).
4. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, and C. F. Lin, Appl. Phys. Lett. 89, 161105 (2006).
5. Z. T. Lin, H. Yang, S. Z. Zhou, H. Y. Wang, X. S. Hong, and G. Q. Li, Cryst. Growth Des. 12, 2836 (2012).
6. J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee, IEEE Trans. Electron Devices 57, 157 (2010).
7. H. Y. Gao, F. W. Yan, Y. Zhang, J. M. Li, and Y. P. Zeng, J. Appl. Phys. 103, 014314 (2008).
8. C. C. Kao, Y. K. Su, C. L. Lin, and J. J. Chen, Appl. Phys. Lett. 97, 023111 (2010).
9. Y. K. Ee, J. M. Biser, W. J. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, IEEE J. Sel. Top. Quantum Electron. 15, 1066 (2009).
10. Y. C. Shin, D. H. Kim, D. J. Chae, J. W. Yang, J. I. Shim, J. M. Park, K. M. Ho, K. Constant, H. Y. Ryu, and T. G. Kim, IEEE J. Sel. Top. Quantum Electron. 46, 1375 (2010).
11. T. B. Wei, K. Wu, D. Lan, Q. F. Kong, Y. Chen, C. X. Du, J. X. Wang, Y. P. Zeng, and J. M. Li, Appl. Phys. Lett. 101, 211111 (2012).
12. J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, IEEE Photon. Technol. Lett. 20, 1193 (2008).
13. C. H. Chan, C. H. Hou, S. Z. Tseng, T. J. Chen, H. T. Chien, F. L. Hsiao, C. C. Lee, Y. L. Tsai, and C. C. Chen, Appl. Phys. Lett. 95, 011110 (2009).
14. Y. S. Lin, K. H. Lin, T. Tite, C. Y. Chuang, Y. M. Chang, and J. A. Ye, J. Cryst. Growth 348, 47 (2012).
15. M. S. Schubert, X. Wang, M. N. Fairchild, and S. D. Hersee, Appl. Phys. Lett. 91, 231107 (2007).
16. P. Zhao and H. P. Zhao, Opt. Express 20, A767 (2012).

Data & Media loading...


Article metrics loading...



Self-assembly SiO nanosphere monolayer template is utilized to fabricate nanopatterned sapphire substrates (NPSSs) with 0-nm, 50-nm, and 120-nm spacing, receptively. The GaN growth on top of NPSS with 0-nm spacing has the best crystal quality because of laterally epitaxial overgrowth. However, GaN growth from pattern top is more difficult to get smooth surface than from pattern bottom. The rougher surface may result in a higher work voltage. The stimulation results of finite-difference time-domain (FDTD) display that too large or too small spacing lead to the reduced light extracted efficiency (LEE) of LEDs. Under a driving current 350 mA, the external quantum efficiencies (EQE) of GaN-based LEDs grown on NPSSs with 0-nm, 50-nm, and 120-nm spacing increase by 43.3%, 50.6%, and 39.1%, respectively, compared to that on flat sapphire substrate (FSS). The optimized pattern spacing is 50 nm for the NPSS with 600-nm pattern period.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd