Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/2/10.1063/1.4867099
1.
1. A. Rogalski, Infrared Physics & Technology 43, 187 (2002).
http://dx.doi.org/10.1016/S1350-4495(02)00140-8
2.
2. A. G. U. Perera, S. G. Matsik, P. V. V. Jayaweera, K. Tennakone, H. C. Liu, M. Buchanan, G. Von Winckel, A. Stintz, and S. Krishna, Applied Physics Letters 89, 131118 (2006).
http://dx.doi.org/10.1063/1.2358106
3.
3. P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, Applied Physics Letters 93, 021105 (2008).
http://dx.doi.org/10.1063/1.2959060
4.
4. K. M. S. V. Bandara, B. F. Levine, and M. T. Asom, Journal of Applied Physics 74, 346 (1993).
http://dx.doi.org/10.1063/1.354115
5.
5. V. Ryzhii, Semiconductor Science and Technology 11, 759 (1996).
http://dx.doi.org/10.1088/0268-1242/11/5/018
6.
6. Z. Ye, J. C. Campbell, Z. Chen, E. Tae Kim, and A. Madhukar, Applied Physics Letters 83, 1234 (2003).
http://dx.doi.org/10.1063/1.1597987
7.
7. J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, Applied Physics Letters 84, 2166 (2004).
http://dx.doi.org/10.1063/1.1688982
8.
8. E. Tae Kim, A. Madhukar, Z. Ye, and J. C. Campbell, Applied Physics Letters 84, 3277 (2004).
http://dx.doi.org/10.1063/1.1719259
9.
9. P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, Applied Physics Letters 86, 191106 (2005).
http://dx.doi.org/10.1063/1.1923766
10.
10. A. S. Davydov, Theory of Molecular Excitons (Plenum Press, New York, 1971).
11.
11. T. Chakraborty, Quantum Dots: A Survey of the Properties of Artificial Atoms (Elsevier Science, 1999).
12.
12. G. Yusa and H. Sakaki, Applied Physics Letters 70, 345 (1997).
http://dx.doi.org/10.1063/1.119068
13.
13. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, Journal of Physical Chemistry B 110, 25451 (2006).
http://dx.doi.org/10.1021/jp064817b
14.
14. S. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, and P. M. Petroff, Applied Physics Letters 73, 2003 (1998).
http://dx.doi.org/10.1063/1.122349
15.
15. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science 307, 538 (2005).
http://dx.doi.org/10.1126/science.1104274
16.
16. D. Loss and D. P. DiVincenzo, Physical Review A 57, 120 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.120
17.
17. L. P. Kouwenhoven, C. M. Marcus, P. L. Mceuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, “Electron transport in quantum dots,” in MesoscopicElectron Transport ed. L. L. Sohn, L. P. Kouwenhoven, and G. Schoen (NATO Series, Kluwer, Dordrecht, 1997).
18.
18. S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998).
http://dx.doi.org/10.1126/science.281.5376.540
19.
19. A. P. Alivisatos, Science 271, 933 (1996).
http://dx.doi.org/10.1126/science.271.5251.933
20.
20. S. Krishna, Infrared Physics & Technology 47, 153 (2005).
http://dx.doi.org/10.1016/j.infrared.2005.02.020
21.
21. I. R. Sellers, D. J. Mowbray, T. J. Badcock, J.-P. R. Wells, P. J. Phillips, D. A. Carder, H. Y. Liu, K. M. Groom, and M. Hopkinson, Applied Physics Letters 88(8), 081108 (2006).
http://dx.doi.org/10.1063/1.2177656
22.
22. P. Aivaliotis, E. A. Zibik, L. R. Wilson, S. Menzel, J. W. Cockburn, J. P. R. David, M. Hopkinson, C. Groves, S. L. Liew, C. H. Tan, and S. C. Liew-Tat-Mun, International Workshop on Quantum Well Infrared Photodetectors, QWIP 2006.
23.
23. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. TumolilloJr, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, Applied Physics Letters 86, 193501 (2005).
http://dx.doi.org/10.1063/1.1924887
24.
24. G. Ariyawansa, A. G. U. Perera, G. S. Raghavan, G. Von Winckel, A. Stintz, and S. Krishna, IEEE Photonics Technology Letters 17, 1064 (2005).
http://dx.doi.org/10.1109/LPT.2005.846753
25.
25. R. S. Attaluri, S. Annamalai, K. T. Posani, A. Stintz, and S. Krishna, Journal of Vacuum Science Technology B 24(3), 1553 (2006).
http://dx.doi.org/10.1116/1.2190676
26.
26. J. Shao, T. E. Vandervelde, A. Barve, W.-Y. Jang, A. Stintz, and S. Krishna, Journal of Vacuum Science Technology B 29(3), 03C1231 (2011).
27.
27. http://www.wsi.tum.de/Research/VoglgroupT33/AreasofResearch/nextnano/tabid/120/Default.aspx. Nextnano is a software package, which is used for the simulation of three-dimensional semiconductor nanostructures. It provides tools to solve the coupled Schrödinger, Poisson, and semiclassical as well as quantum transport equations in one, two and three dimensions.
28.
28. S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Aryawansa, S. G. Matisk, and A. G. U. Perera, Applied Physics Letters 83, (2003).
http://dx.doi.org/10.1063/1.1615838
29.
29. S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, Applied Physics Letters 81, 1369 (2002).
http://dx.doi.org/10.1063/1.1498009
30.
30. S. Krishna, S. Raghavan, G. von Winckel, P. Rotella, A. Stintz, C. P. Morath, D. Le, and S. W. Kennerly, Applied Physics Letters 82, 2574 (2003).
http://dx.doi.org/10.1063/1.1567806
31.
31. S. Raghavan, D. Forman, P. Hill, N. R. Weisse-Bernstein, G. Von Winckel, P. Rottella, S. Krishna, S. W. Kennerly, and J. W. Little, Journal of Applied Physics 96, 1036 (2004).
http://dx.doi.org/10.1063/1.1760832
32.
32. Sanjay Krishna, Journal of Physics D: Applied Physics 38, 2142 (2005).
http://dx.doi.org/10.1088/0022-3727/38/13/010
33.
33. L. Hoglund, C. Asplund, Q. Wang, S. Almqvist, H. Malm, E. Petrini, J. Y. Andersson, P. O. Holtz, and H. Pettersson, Applied Physics Letters 88, 213510 (2006).
http://dx.doi.org/10.1063/1.2207493
34.
34. N. Vukmirovic, D. Indjin, Z. Ikonic, and P. Harrison, Applied Physics Letters 88, 251107 (2006).
http://dx.doi.org/10.1063/1.2216920
35.
35. N. Vukmirovic, Z. Ikonic, I. Sevic, D. Indjin, and P. Harrison, Journal of Applied Physics 100, 074502 (2006).
http://dx.doi.org/10.1063/1.2354321
36.
36. P. Aivaliotis, N. Vukmirovic, E. A. Zibik, J. W. Cockburn, D. Indjin, P. Harrison, C. Groves, J. P. R. David, M. Hopkinson, and L. R. Wilson, Journal of Physics D: Applied Physics 40, 5537 (2007).
http://dx.doi.org/10.1088/0022-3727/40/18/004
37.
37. G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, Applied Physics Letters 92, 193507 (2008).
http://dx.doi.org/10.1063/1.2927487
38.
38. H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, Applied Physics Letters 92, 193506 (2008).
http://dx.doi.org/10.1063/1.2926663
39.
39. G. Jolley, L. Fu, H. H. Tan, and C. Jagadish, Applied Physics Letters 91, 173508 (2007).
http://dx.doi.org/10.1063/1.2802559
40.
40. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Journal of Applied Physics 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/2/10.1063/1.4867099
Loading
/content/aip/journal/adva/4/2/10.1063/1.4867099
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/2/10.1063/1.4867099
2014-02-25
2016-12-02

Abstract

We study numerically absorption optical spectra of n-doped quantum dot-in-a-well systems. The absorption spectra are mainly determined by the size of a quantum dot and have weak dependence on the thickness of quantum well and position of the dot in a well. The dot-in-a-well system is sensitive to both in-plane and out-of-plane polarizations of the incident light with much stronger absorption intensities for the in-plane-polarized light. The absorption spectrum of in-plane-polarized light has also a multi-peak structure with two or three peaks of comparable intensities, while the absorption spectrum of out-of-plane polarized light has a single well-pronounced peak.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/2/1.4867099.html;jsessionid=-VdZ0DXSl6iz_SU7Hc2RFvQC.x-aip-live-03?itemId=/content/aip/journal/adva/4/2/10.1063/1.4867099&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/2/10.1063/1.4867099&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/2/10.1063/1.4867099'
Right1,Right2,Right3,