Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett. 3, 149 (2003).
2. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, Nature 451, 168 (2008).
3. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature 449, 885 (2007).
4. K.-K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, and S. W. Novak, Appl. Phys. Lett. 85, 3101 (2004).
5. S.-Y. Lee, C.-O. Jang, D.-J. Kim, J.-H. Hyung, K. Rogdakis, E. Bano, K. Zekentes, and S.-K. Lee, J. Phys. Chem. C 112, 13287 (2008).
6. B. M. Curtin, E. A. Codecido, S. Krämer, and J. E. Bowers, Nano Lett. 13, 5503 (2013).
7. S.-W. Chung, J.-Y. Yu, and J. R. Heath, Appl. Phys. Lett. 76, 2068 (2000).
8. G. Zheng, W. Lu, S. Jin, and C. M. Lieber, Adv. Mater. 16, 1890 (2004).
9. Y. Cui, X. Duan, J. Hu, and C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000).
10. N. Elfstrom and J. Linnros, Appl. Phys. Lett. 91, 103502 (2007).
11. M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, J. Phys. Chem. C 112, 4444 (2008).
12. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).
13. S. N. Mohammad, J. Appl. Phys. 108, 034311 (2010).
14. C.-Y. Chen, C.-S. Wu, C.-J. Chou, and T.-J. Yen, Adv. Mater. 20, 3811 (2008).
15. Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, Adv. Mater. 23, 285 (2011).
16. X. Zhong, Y. Qu, Y. C. Lin, L. Liao, and X. Duan, ACS Appl. Mater. Interfaces 3, 261 (2011).
17. S. M. Sze, D. J. Coleman Jr, and A. Loya, Solid-State Electron. 14, 1209 (1971).
18. Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, and L.-M. Peng, Adv. Funct. Mater. 17, 2478 (2007).
19. F. Padovani and R. Stratton, Solid-State Electron. 9, 695 (1966).
20. Y. Qi, Z. Wang, M. Zhang, F. Yang, and X. Wang, J. Phys. Chem. C 117, 25090 (2013).
21. Z. Zhang, C. Jin, X. Liang, Q. Chen, and L.-M. Peng, Appl. Phys. Lett. 88, 073102 (2006).
22. F. Liu, Z. Su, L. Li, F. Mo, S. Jin, S. Deng, J. Chen, C. Shen, H. Gao, and N. Xu, Adv. Funct. Mater. 20, 1994 (2010).
23. Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, and X. Duan, Nano Lett. 9, 4539 (2009).

Data & Media loading...


Article metrics loading...



The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage () characteristics. Asymmetric, rectifying and symmetric curves were obtained. The diversity of the curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd