Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/3/10.1063/1.4867011
1.
1. S. Ono and S. Kondo, in: Encyclopedia of Physics, S. Flugge (ed.) (Springer, Berlin, 1960), Vol.10.
2.
2. J. S. Rowlinson and B. Widom, The Molecular Theory of Capillarity (Oxford, Clarendon, 1982).
3.
3. H. T. Davis and L. E. Scriven, in: Advances in Chemical Physics, I. Prigogine and S. A. Rice (eds.) (Wiley, New York, 1982), Vol. XLIX.
4.
4. L. Mistura, J. Chem. Phys. 83, 3633 (1985).
http://dx.doi.org/10.1063/1.449170
5.
5. E. Wajnryb, A. R. Altenberger, and J. S. Dahler, J. Chem. Phys. 103, 9782 (1995).
http://dx.doi.org/10.1063/1.469942
6.
6. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950).
http://dx.doi.org/10.1063/1.1747782
7.
7. A. Harasima, Adv. Chem. Phys. 1, 203 (1958).
8.
8. E. M. Blokhuis and D. Bedeaux, J. Chem. Phys. 97, 3576 (1992).
http://dx.doi.org/10.1063/1.462992
9.
9. B. D. Todd, D. J. Evans, and P. J. Daivis, J. Chem. Phys. 52, 1627 (1995).
10.
10. B. Hafskjold and T. Ikeshoji, Phys. Rev. E 66, 011203 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.011203
11.
11. M. Iwamatsu, Phys. A 329, 14 (2003).
http://dx.doi.org/10.1016/S0378-4371(03)00599-5
12.
12. E. N. Brodskaya and A. I. Rusanov, Colloid Journal 71, 22 (2009).
http://dx.doi.org/10.1134/S1061933X09010037
13.
13. F. Sedaghat and G. Mansoori, Microfluidics and Nanofluidics 8, 97 (2010).
http://dx.doi.org/10.1007/s10404-009-0449-y
14.
14. A. Mulero, Theory and Simulation of Hard-sphere Fluids and Related Systems (Springer, Berlin, 2008).
15.
15. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, New York, 1986).
16.
16. D. Henderson, Fundamentals of Inhomogeneous Fluids (Dekker, New York, 1992).
17.
17. Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.980
18.
18. Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002).
http://dx.doi.org/10.1063/1.1520530
19.
19. B. Peng and Y. X. Yu, Langmuir 24, 12431 (2008).
http://dx.doi.org/10.1021/la8024099
20.
20. F. Q. You, Y. X. Yu, and G. H. Gao, J. Chem. Phys. 123, 114705 (2005).
http://dx.doi.org/10.1063/1.2013247
21.
21. Y. X. Yu, G. H. Gao, and X. L. Wang, J. Phys. Chem. B 110, 14418 (2006).
http://dx.doi.org/10.1021/jp060986k
22.
22. K. Wang, Y. X. Yu, and G. H. Gao, J. Chem. Phys. 128, 185101 (2008).
http://dx.doi.org/10.1063/1.2918342
23.
23. B. Peng and Y. X. Yu, J. Chem. Phys. 131, 134703 (2009).
http://dx.doi.org/10.1063/1.3243873
24.
24. D. J. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Cambridge University Press, Cambridge, 2008).
25.
25. M. Lupkowski and F. van Swol, J. Chem. Phys. 93, 737 (1990).
http://dx.doi.org/10.1063/1.459524
26.
26. M. Heni and H. Lowen, Phys. Rev. E 60, 7057 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.7057
27.
27. Y. X. Yu, J. Chem. Phys. 131, 024704 (2009).
http://dx.doi.org/10.1063/1.3174928
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4867011
Loading
/content/aip/journal/adva/4/3/10.1063/1.4867011
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4867011
2014-02-25
2016-12-11

Abstract

To gain a deeper understanding and to master the mechanical properties of classical fluids confined in nano-geometry, the pressure tensor applicable to confined fluids is derived by taking into account more correlation among the particles. First, based on classical statistical theory, the expression for the pressure tensor is calculated by expanding the stress tensor and considering further the correlation effect among the particles. Our numerical result is compared with that of molecular dynamics simulation and the agreement between them is quite good. Then, the dependence of the bulk density and the dimension of the cavity on the pressure profile is computed and studied. The curvature dependence of contact pressure and net pressure on the cavity wall is also studied. Finally, the solid–fluid interfacial tension is calculated and compared with Monte Carlo results. The results derived in this work indicate the importance and necessity of correlation among particles in the prediction of the mechanical properties of confined fluids.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4867011.html;jsessionid=a8kx8ewsfrAJg_aAAQtHFYlm.x-aip-live-03?itemId=/content/aip/journal/adva/4/3/10.1063/1.4867011&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/3/10.1063/1.4867011&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/3/10.1063/1.4867011'
Right1,Right2,Right3,