Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/3/10.1063/1.4867089
1.
1. W. R. Davis, J. Wilson, S. Mick, M. Xu, H. Hhua, C. Mineo, A. M. Sule, M. Steer, and P. D. Franzon, IEEE Des. Test Comput. 22, 498 (2005).
http://dx.doi.org/10.1109/MDT.2005.136
2.
2. C. T. Ko and K. N. Chen, Microelectron. Reliab. 50, 481 (2010).
http://dx.doi.org/10.1016/j.microrel.2009.09.015
3.
3. C. S. Tan, J. Fan, D. F. Lim, G. Y. Chong, and K. H. Li, J. Micromech. Microeng. 21, 075006 (2011).
http://dx.doi.org/10.1088/0960-1317/21/7/075006
4.
4. E. J. Jang, S. Hyun, H. J. Lee, and Y. B. Park, J. Electro. Mater. 38, 2449 (2009).
http://dx.doi.org/10.1007/s11664-009-0942-9
5.
5. E. Beyne, IEEE International Symposium on VLSI Technology, Systems, and Applications (2006).
6.
6. R. Nadipalli, J. Fan, K. H. Li, K. W. Wee, H. Yu, and C. S. Tan, IEEE International 3D System Integration Conference (2012).
7.
7. J. Fan, P. Anantha, C. Y. Liu, M. Bergkvist, H. Wang, and C. S. Tan, ECS J. Solid State Sci. Technol. 2, N169 (2013).
http://dx.doi.org/10.1149/2.012309jss
8.
8. V. Dragoi, E. Cakmak, E. Capsuto, C. McEwen, and E. Pabo, Smart Sensors, Actuators and MEMS IV (2009).
9.
9. F. Niklaus, G. Stemme, J. Q. Lu, and R. J. Gutmann, J. Appl. Phys. 99, 031101 (2006).
http://dx.doi.org/10.1063/1.2168512
10.
10. S. Na, T. Hwang, J. Park, J. Kim, H. Yoo, and C. Lee, IEEE Electronic Components and Technology Conference (2011).
11.
11. L. He, G. Salomonsen, W. Kaiying, K. E. Aasmundtveit, and N. Hoivik, IEEE T. Comp. Pack. Man. 1, 1350 (2011).
12.
12. C. H. Tsau, S. M. Spearing, and M. A. Schmidt, J. Microelectromech. S. 13, 963 (2004).
http://dx.doi.org/10.1109/JMEMS.2004.838393
13.
13. C. H. Yun, J. R. Martin, E. B. Tarvin, and J. T. Winbigler, IEEE International Conference on Microelectromechanical Systems (2008).
14.
14. C. S. Tan and R. Reif, Electrochem. Solid-State Lett. 8, G147 (2005).
http://dx.doi.org/10.1149/1.1904506
15.
15. J. A. Burns, B. F. Aull, C. K. Chen, C. Chang-Lee, C. L. Keast, J. M. Knecht, V. Suntharalingam, K. Warner, P. W. Wyatt, and D. R. W. Yost, IEEE T. Electron Dev. 53, 2507 (2006).
http://dx.doi.org/10.1109/TED.2006.882043
16.
16. K. N. Chen, A. Fan, and R. Reif, J. Electron. Mater. 30, 331 (2001).
http://dx.doi.org/10.1007/s11664-001-0039-6
17.
17. K. N. Chen, C. S. Tan, A. Fan, and R. Reif, Electrochem. Solid-State Lett. 7, G14 (2004).
http://dx.doi.org/10.1149/1.1626994
18.
18. C. S. Tan, D. F. Lim, S. G. Singh, S. K. Goulet, and M. Bergkvist, Appl. Phys. Lett. 95, 192108 (2009).
http://dx.doi.org/10.1063/1.3263154
19.
19. G. Y. Chong and C. S. Tan, Electrochem. Solid-State Lett. 12, H408 (2009).
http://dx.doi.org/10.1149/1.3207872
20.
20. P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, J. Appl. Mech. 56, 77 (1989).
http://dx.doi.org/10.1115/1.3176069
21.
21. B. Kim, T. Matthias, E. Cakmak, E. J. Jang, J. W. Kim, and Y. B. Park, Solid State Technol. 53, 18 (2010).
http://dx.doi.org/10.1016/j.sse.2009.09.006
22.
22. Y. Tao and A. P. Malshe, Microelectron. Reliab. 45, 559 (2005).
http://dx.doi.org/10.1016/j.microrel.2004.08.004
23.
23. Y. K. Kim, E. K. Kim, S. W. Kim, and B. K. Ju, Sens. Actuators A 143, 323 (2008).
http://dx.doi.org/10.1016/j.sna.2007.10.048
24.
24. J. Oberhammer, F. Niklaus, and G. Stemme, Sens. Actuators A 110, 407 (2004).
http://dx.doi.org/10.1016/j.sna.2003.06.003
25.
25. D. Q. Yu, C. Lee, L. L. Yan, M. L. Thew, and J. H. Lau, J. Alloy. Compd. 485, 444 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.05.136
26.
26. D. H. Xu, E. R. Jing, B. Xiong, and Y. L. Wang, IEEE T. Adv. Pack. 33, 904 (2010).
http://dx.doi.org/10.1109/TADVP.2010.2072925
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4867089
Loading
/content/aip/journal/adva/4/3/10.1063/1.4867089
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4867089
2014-02-25
2016-09-25

Abstract

This work systematically investigated a high- Al O material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al O layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300 °C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO), a higher interfacial adhesion energy (∼11.93 J/m2) and a lower helium leak rate (∼6.84 × 10−10 atm.cm3/sec) were detected for samples bonded using Al O. More importantly, due to the excellent thermal conductivity performance of Al O, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4867089.html;jsessionid=yWfLDa77BdnYf3u7Whmq70MN.x-aip-live-02?itemId=/content/aip/journal/adva/4/3/10.1063/1.4867089&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/3/10.1063/1.4867089&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/3/10.1063/1.4867089'
Right1,Right2,Right3,