1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
A sliding cell technique for diffusion measurements in liquid metals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/3/10.1063/1.4868382
1.
1. B. Zhang, A. Griesche, and A. Meyer, Phys. Rev. Lett. 104, 035902 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.035902
2.
2. T. Masaki, T. Fukazawa, S. Matsumoto, T. Itami, and S. Yoda, Meas. Sci. Technol. 16, 327 (2005).
http://dx.doi.org/10.1088/0957-0233/16/2/002
3.
3. J. I. Akhter, E. Ahmed, and M. Ahmad, Mater. Chem. Phys. 93, 504 (2005).
http://dx.doi.org/10.1016/j.matchemphys.2005.03.048
4.
4. J. R. Cahoon, Metall. Mater. Trans. A 28A, 583 (1997).
http://dx.doi.org/10.1007/s11661-997-0044-3
5.
5. R. A. Swalin, Acta Metall. 7, 736 (1959).
http://dx.doi.org/10.1016/0001-6160(59)90179-8
6.
6. K. Maser, J. Solid State Electrochem. 4, 3 (1999).
http://dx.doi.org/10.1007/s100080050186
7.
7. I. Y. Khandros and M. Ohring, J. Mater. Sci. 24, 252 (1989).
http://dx.doi.org/10.1007/BF00660963
8.
8. D. Q. Zhao, W. H. Wang, Y. X. Zhuang, M. Zhang, and M. X. Pan, Phys. Stat. Sol. (a) 174, 337 (1999).
http://dx.doi.org/10.1002/(SICI)1521-396X(199908)174:2<337::AID-PSSA337>3.0.CO;2-F
9.
9. R. Roşu-Pflumm, W. Wendl, G. Müller-Vogt, S. Suzuki, K.-H. Kraatz, and G. Frohberg, Int. J. Heat Mass Transfer 52, 6042 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.001
10.
10. G. Mathiak, A. Griesche, K. H. Kraatz, and G. Frohberg, J. Non-Cryst. Solids 205–207, 412 (1996).
http://dx.doi.org/10.1016/S0022-3093(96)00253-0
11.
11. A. Griesche, B. Zhang, E. Solórzano, and F. Garcia-Moreno, Rev. Sci. Instrum. 81, 056104 (2010).
http://dx.doi.org/10.1063/1.3427256
12.
12. F. Kargl, E. Sondermann, H. Weis, and A. Meyer, High temp.-high press. 42, 3 (2012).
13.
13. C. Neumann, E. Sondermann, F. Kargl, and A. Meyer, J. Phys.: Conf. Series. 327, 012052 (2011).
http://dx.doi.org/10.1088/1742-6596/327/1/012052
14.
14. E. Sondermann, C. Neumann, F. Kargl, and A. Meyer, High temp.-high press. 42, 23 (2013).
15.
15. F. Kargl, M. Engelhardt, F. Yang, H. Weis, P. Schmakat, B. Schillinger, A. Griesche, and A. Meyer, J. Phys.: Condens. Matter 23, 254201 (2011).
http://dx.doi.org/10.1088/0953-8984/23/25/254201
16.
16. H. Müller and G. Müller-Vogt, Cryst. Res. Technol. 38, 707 (2003).
http://dx.doi.org/10.1002/crat.200310085
17.
17. G. Careri, A. Paoletti, and M. Vicentini, Nuovo Cimento X, 1088 (1958).
http://dx.doi.org/10.1007/BF02859571
18.
18. J. Cahoon, Y. Jiao, K. Tandon, and M. Chaturvedi, J. Phase Equilib. Diffus. 27, 325 (2006).
http://dx.doi.org/10.1007/s11669-006-0004-4
19.
19. M. Klassen and J. R. Cahoon, Metall. Mater. Trans. A 31A, 1343 (2000).
http://dx.doi.org/10.1007/s11661-000-0253-5
20.
20. A. Griesche, F. Garcia-Moreno, M.-P. Macht, and G. Frohberg, Mater. Sci. Forum 508, 567 (2006).
http://dx.doi.org/10.4028/www.scientific.net/MSF.508.567
21.
21. N. Konstantinova, A. Kurochkin, and P. Popel, EPJ Web of Conferences 15, 01024 (2011).
http://dx.doi.org/10.1051/epjconf/20111501024
22.
22. J. M. Frederiksen, L. Mejlbro, and L.-O. Nilsson, Ficks 2nd law - Complete solutions for chloride ingress into concrete - with focus on time dependent diffusivity and boundary condition (Division of Building Materials LTH, Lund University, Sweden, 2008).
23.
23. T. Masaki, T. Fukazawa, Y. Watanabe, M. Kanek, S. Yoda, and T. Itami, J.Non-Cryst. Solids 353, 32903294 (2007).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.05.073
24.
24. A. Griesche, K. H. Kraatz, and G. Frohberg, Rev. Sci. Instrum. 69, 315 (1998).
http://dx.doi.org/10.1063/1.1148516
25.
25. M. Uchida, Y. Uchida, S. Matsumoto, M. Kaneko, T. Fukazawa, T. Masaki, and T. Itami, J. Non-Cryst. Solids 312–314, 203 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)01697-6
26.
26. Nathan Lee and J. Cahoon, J. Phase Equilib. Diff. 32, 226234 (2011).
http://dx.doi.org/10.1007/s11669-011-9883-0
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4868382
Loading
/content/aip/journal/adva/4/3/10.1063/1.4868382
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4868382
2014-03-11
2014-12-26

Abstract

The long capillary and shear cell techniques are the usual methods for diffusion measurements in liquid metals. Here we present a new “sliding cell technique” to measure interdiffusion in liquid alloys, which combines the merits of these two methods. Instead of a number of shear cells, as used in the shear cell method, only one sliding cell is designed to separate and join the liquid diffusion samples. Using the sliding cell technique, the influence of the heating process (which affects liquid diffusion measurements in the conventional long capillary method) can be eliminated. Time-dependent diffusion measurements at the same isothermal temperature were carried out in Al-Cu liquids. Compared with the previous results measured by X-ray radiography, the obtained liquid diffusion coefficient in this work is believed to be influenced by convective flow. The present work further supports the idea that to obtain accurate diffusion constants in liquid metals, the measurement conditions must be well controlled, and there should be no temperature gradients or other disturbances.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4868382.html;jsessionid=rd03cczccpy4.x-aip-live-02?itemId=/content/aip/journal/adva/4/3/10.1063/1.4868382&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A sliding cell technique for diffusion measurements in liquid metals
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4868382
10.1063/1.4868382
SEARCH_EXPAND_ITEM