1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Low-index-metamaterial for gain enhancement of planar terahertz antenna
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/3/10.1063/1.4868384
1.
1. P. H. Siegel, IEEE Trans. Microw. Theory Tech. 50, 910 (2002).
http://dx.doi.org/10.1109/22.989974
2.
2. M. Tonouchi, Nature Photon. 1, 97 (2007).
http://dx.doi.org/10.1038/nphoton.2007.3
3.
3. J. Federici and L. Moeller, J. Appl. Phys. 107, 111101 (2010).
http://dx.doi.org/10.1063/1.3386413
4.
4. H. J. Song and T. Nagatsuma, IEEE Trans. Terahertz Science Technol. 1, 256 (2011).
http://dx.doi.org/10.1109/TTHZ.2011.2159552
5.
5. Y. J. Huang, G. J. Wen, T. Q. Li, J. L. Li, and K. Xie, IEEE Antennas Wirel. Proga. Lett. 11, 1536 (2012).
6.
6. L. M. Si, Y. Liu, H. D. Lu, H. J. Sun, X. Lv, and W. Zhu, IEEE Photon. Tech. Lett. 25, 519 (2013).
http://dx.doi.org/10.1109/LPT.2013.2244878
7.
7. D. D. Semenov, H. Richter, H. W. Hubers, B. Gunther, A. Smirnov, K. S. II'in, M. Siegel, and J. P. Karamarkovic, IEEE Trans. Microw. Theory Tech. 55, 239 (2007).
http://dx.doi.org/10.1109/TMTT.2006.889153
8.
8. Y. M. Huo, G. W. Taylor, and R. Bansal, Int. J. Infrared Milli. 23, 819 (2002).
http://dx.doi.org/10.1023/A:1015738932198
9.
9. J. M. Edwards, R. O'Brient, A. T. Lee, and G. M. Rebeiz, IEEE Trans. Antennas Propag. 60, 4082 (2012).
http://dx.doi.org/10.1109/TAP.2012.2207048
10.
10. G. M. Rebeiz, Proc. IEEE 80, 1748 (1992).
http://dx.doi.org/10.1109/5.175253
11.
11. G. P. Williams, Rep. Prog. Phys. 69, 301 (2006).
http://dx.doi.org/10.1088/0034-4885/69/2/R01
12.
12. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, IEEE J. Sel. Top. Quantum Electron. 17, 92 (2011).
http://dx.doi.org/10.1109/JSTQE.2010.2047847
13.
13. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
http://dx.doi.org/10.1126/science.1096796
14.
14. D. H. Kwon and D. H. Werner, Opt. Express 15, 9267 (2007).
http://dx.doi.org/10.1364/OE.15.009267
15.
15. W. Zhu, I. D. Rukhlenko, and M. Premaratne, Appl. Phys. Lett. 101, 031907 (2012).
http://dx.doi.org/10.1063/1.4737643
16.
16. N. M. Litchinitser, A. I. Mainistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, Opt. Lett. 33, 2350 (2008).
http://dx.doi.org/10.1364/OL.33.002350
17.
17. W. Zhu, I. D. Rukhlenko, and M. Premaratne, Appl. Phys. Lett. 102, 011910 (2013).
http://dx.doi.org/10.1063/1.4774320
18.
18. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Nat. Photonics 7, 791 (2013).
http://dx.doi.org/10.1038/nphoton.2013.214
19.
19. W. Zhu, L. M. Si, and M. Premaratne, AIP Adv. 3, 112124 (2013).
http://dx.doi.org/10.1063/1.4834435
20.
20. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. A. Min, Nature 470, 369 (2011).
http://dx.doi.org/10.1038/nature09776
21.
21. Y. Y. Chen, I. A. I. Al-Naib, J. Q. Gu, M. W. Wang, T. Ozaki, R. Morandotti, and W. L. Zhang, AIP Adv. 2, 022109 (2012).
http://dx.doi.org/10.1063/1.4704549
22.
22. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, Science 340, 1304 (2013).
http://dx.doi.org/10.1126/science.1235399
23.
23. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, Phys. Rev. Lett. 89, 213902 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.213902
24.
24. B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.033903
25.
25. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, Phys. Rev. Lett. 100, 023903 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.023903
26.
26. V. Torres, V. Pacheco-Pena, P. Rodriguez-Ulibarri, M. Navarro-Cia, M. Beruete, M. Sorolla, and N. Engheta, Opt. Express 21, 9156 (2013).
http://dx.doi.org/10.1364/OE.21.009156
27.
27. A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Phys. Rev. B 87, 155130 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.155130
28.
28. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, Phys. Rev. Lett. 107, 133901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.133901
29.
29. C. M. Park and S. H. Lee, Appl. Phys. Lett. 102, 241906 (2013).
http://dx.doi.org/10.1063/1.4811742
30.
30. R. W. Ziolkowski, Phys. Rev. E 70, 046608 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.046608
31.
31. A. Erentok, P. L. Luljak, and R. W. Ziolkowski, IEEE Trans. Antennas Propag. 53, 160 (2005).
http://dx.doi.org/10.1109/TAP.2004.840534
32.
32. G. Lovat, P. B. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wiltton, IEEE Trans. Antennas Propag. 54, 1017 (2006).
http://dx.doi.org/10.1109/TAP.2006.869925
33.
33. A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B 75, 155410 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155410
34.
34. H. Zhou, Z. Pei, S. Qu, S. Zhang, J. Wang, Z. Duan, and Z. Xu, IEEE Antenn. Wirel. Progag. Lett. 8, 538 (2009).
http://dx.doi.org/10.1109/LAWP.2009.2018710
35.
35. S. N. Burokur, J. P. Daniel, P. Ratajczak, and A. de Lustrac, Appl. Phys. Lett. 97, 064101 (2010).
http://dx.doi.org/10.1063/1.3478214
36.
36. J. P. Turpin, Q. Wu, D. H. Werner, B. Martin, M. Bray, and E. Lier, IEEE Trans. Antennas Propag. 60, 5717 (2012).
http://dx.doi.org/10.1109/TAP.2012.2214013
37.
37. A. F. Starr, P. M. Rye, D. R. Smith, and S. Nemat-nasser, Phys. Rev. B 70, 113102 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.113102
38.
38. X. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, Phys. Rev. E 70, 016608 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.016608
39.
39. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, Phys. Rev. E 71, 036617 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.036617
40.
40. D. M. Pozar, Microwave Engineering (Wiley, New York, 2011).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4868384
Loading
/content/aip/journal/adva/4/3/10.1063/1.4868384
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4868384
2014-03-11
2014-09-21

Abstract

We theoretically present a high gain planar antenna at terahertz (THz) frequencies by combing a conventional log-periodic antenna (LPA) with a low-index-metamaterial (LIM, || < 1). The LIM is realized by properly designing a fishnet metamaterial using full-wave finite-element simulation. Owing to the impedance matching, the LIM can be placed seamlessly on the substrate of the LPA without noticeable reflection. The effectiveness of using LIM for antenna gain enhancement is confirmed by comparing the antenna performance with and without LIM, where significantly improved half-power beam-width (3-dB beam-width) and more than 4 dB gain enhancement are seen within a certain frequency range. The presented LIM-enhanced planar THz antenna is compact, flat, low profile, and high gain, which has extensive applications in THz systems, including communications, radar, and spectroscopy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4868384.html;jsessionid=3nocteqecg5db.x-aip-live-06?itemId=/content/aip/journal/adva/4/3/10.1063/1.4868384&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Low-index-metamaterial for gain enhancement of planar terahertz antenna
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4868384
10.1063/1.4868384
SEARCH_EXPAND_ITEM