Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/3/10.1063/1.4868518
1.
1. J. Ando, K. Fujita, N. I. Smith, and S. Kawata, Nano Letters 11(12), 53445348 (2011).
http://dx.doi.org/10.1021/nl202877r
2.
2. B. Bozzini, L. D’Urzo, C. Mele, and V. Romanello, Journal of Physical Chemistry C 112(16), 63526358 (2008).
http://dx.doi.org/10.1021/jp0726539
3.
3. J. Xu, P. Kvasnicka, M. Idso, R. W. Jordan, H. Gong, J. Homola, and Q. Yu, Optics Express 19(21), 2049320505 (2011).
http://dx.doi.org/10.1364/OE.19.020493
4.
4. B. Guven, N. Basaran-Akgul, E. Temur, U. Tamer, and I. H. Boyaci, Analyst 136(4), 740748 (2011).
http://dx.doi.org/10.1039/c0an00473a
5.
5. J. Neng, M. H. Harpster, H. Zhang, J. O. Mecham, W. C. Wilson, and P. A. Johnson, Biosensors & Bioelectronics 26(3), 10091015 (2010).
http://dx.doi.org/10.1016/j.bios.2010.08.015
6.
6. K. K. Strelau, A. Brinker, C. Schnee, K. Weber, R. Moller, and J. Popp, J. Raman Spectrosc. 42(3), 243250 (2011).
http://dx.doi.org/10.1002/jrs.2730
7.
7. Y. H. Sun, R. M. Kong, D. Q. Lu, X. B. Zhang, H. M. Meng, W. H. Tan, G. L. Shen, and R. Q. Yu, Chemical Communications 47(13), 38403842 (2011).
http://dx.doi.org/10.1039/c0cc05133k
8.
8. U. S. Dinish, F. C. Yaw, A. Agarwal, and M. Olivo, Biosensors & Bioelectronics 26(5), 19871992 (2011).
http://dx.doi.org/10.1016/j.bios.2010.08.069
9.
9. Y. W. Zhang, S. Liu, L. Wang, X. Y. Qin, J. Q. Tian, W. B. Lu, G. H. Chang, and X. P. Sun, Rsc Advances 2(2), 538545 (2012).
http://dx.doi.org/10.1039/c1ra00641j
10.
10. A. Campion and P. Kambhampati, Chem. Soc. Rev. 27(4), 241250 (1998).
http://dx.doi.org/10.1039/a827241z
11.
11. H. Xu, M. Shao, T. Chen, Y. Zhao, and S.-T. Lee, Journal of Raman Spectroscopy 43(3), 396404 (2012).
http://dx.doi.org/10.1002/jrs.3042
12.
12. B. Ozturk, I. Talukdar, and B. N. Flanders, Nanotechnology 18(36) (2007).
13.
13. J. K. Kawasaki and C. B. Arnold, Nano Lett. 11(2), 781785 (2011).
http://dx.doi.org/10.1021/nl1039956
14.
14. A. Nerowski, J. Opitz, L. Baraban, and G. Cuniberti, Nano Res. 6(5), 303311 (2013).
http://dx.doi.org/10.1007/s12274-013-0303-0
15.
15. N. Ranjan, H. Vinzelberg, and M. Mertig, Small 2(12), 14901496 (2006).
http://dx.doi.org/10.1002/smll.200600350
16.
16. N. Ranjan, M. Mertig, G. Cuniberti, and W. Pompe, Langmuir 26(1), 552559 (2010).
http://dx.doi.org/10.1021/la902026e
17.
17. J. Fan, Z. Zhou, X. Yang, W. Liu, J. Li, and Z. Wang, Electrochem. Solid-State Lett. 15(2), E7E10 (2011).
http://dx.doi.org/10.1149/2.017202esl
18.
18. J. Regtmeier, R. Eichhorn, M. Viefhues, L. Bogunovic, and D. Anselmetti, ELECTROPHORESIS 32(17), 22532273 (2011).
http://dx.doi.org/10.1002/elps.201100055
19.
19. A. Nerowski, M. Poetschke, M. Bobeth, J. Opitz, and G. Cuniberti, Langmuir 28(19), 74987504 (2012).
http://dx.doi.org/10.1021/la300302n
20.
20. M. Zhang, X. Yang, Z. Zhou, and X. Ye, Electrochemistry Communications 27, 133136 (2013).
http://dx.doi.org/10.1016/j.elecom.2012.11.013
21.
21. I. Talukdar, B. Ozturk, B. N. Flanders, and T. D. Mishima, Applied Physics Letters 88(22) (2006).
http://dx.doi.org/10.1063/1.2208431
22.
22. M. A. Bangar, K. Ramanathan, M. Yun, C. Lee, C. Hangarter, and N. V. Myung, Chem. Mater. 16(24), 49554959 (2004).
http://dx.doi.org/10.1021/cm048931n
23.
23. C. Cheng, R. K. Gonela, Q. Gu, and D. T. Haynie, Nano Lett. 5(1), 175178 (2005).
http://dx.doi.org/10.1021/nl048240q
24.
24. Y. Cheng, G. Yu, L. Tang, Y. Zhou, and G. Zhang, Journal of Crystal Growth 334(1), 181188 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.08.024
25.
25. B. Kannan, D. E. Williams, C. Laslau, and J. Travas-Sejdic, J. Mater. Chem. 22(35), 1813218135 (2012).
http://dx.doi.org/10.1039/c2jm33107a
26.
26. P. S. Thapa, D. J. Yu, J. P. Wicksted, J. A. Hadwiger, J. N. Barisci, R. H. Baughman, and B. N. Flanders, Applied Physics Letters 94(3) (2009).
http://dx.doi.org/10.1063/1.3072611
27.
27. B. N. Flanders, Modern Physics Letters B 26(1), 11300011130001 (2012).
http://dx.doi.org/10.1142/S0217984911300018
28.
28. J. Ji, Z. Zhou, X. Yang, W. Zhang, S. Sang, and P. Li, Small (Weinheim an der Bergstrasse, Germany) 9(18), 30143029 (2013).
http://dx.doi.org/10.1002/smll.201201318
29.
29. Y. Zhou, G. Yu, F. Chang, B. Hu, and C.-J. Zhong, Analytica Chimica Acta 757, 5662 (2012).
http://dx.doi.org/10.1016/j.aca.2012.10.036
30.
30. J. Sun, C. Sun, S. K. Batabyal, P. D. Tran, S. S. Pramana, L. H. Wong, and S. G. Mhaisalkar, Electrochemistry Communications 15(1), 1821 (2012).
http://dx.doi.org/10.1016/j.elecom.2011.11.015
31.
31. P. Debye and H. Falkenhagen, Physikalische Zeitschrift 29, 401426 (1928).
32.
32. C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry. (Wiley, 2007).
33.
33. P. S. Thapa, B. J. Ackerson, D. R. Grischkowsky, and B. N. Flanders, Nanotechnology 20(23) (2009).
http://dx.doi.org/10.1088/0957-4484/20/23/235307
34.
34. R. F. Probstein, Physicochemical hydrodynamics: an introduction. (Wiley.com, 2005).
35.
35. N. D. Nikolić, K. I. Popov, L. J. Pavlović, and M. G. Pavlović, Journal of Electroanalytical Chemistry 588(1), 8898 (2006).
http://dx.doi.org/10.1016/j.jelechem.2005.12.006
36.
36. L. Martins, J. I. Martins, A. S. Romeira, M. E. V. Costa, J. D. M. Costa, and M. Bazzaoui, Materials Science Forum 455–456, 844848 (2004).
http://dx.doi.org/10.4028/www.scientific.net/MSF.455-456.844
37.
37. N. D. Nikolić, Journal of the Serbian Chemical Society 72(8/9), 787797 (2007).
http://dx.doi.org/10.2298/JSC0709787N
38.
38. M. Pavlovic, S. Kindlova, and I. Rousar, Electrochim. Acta 37(1), 2327 (1992).
http://dx.doi.org/10.1016/0013-4686(92)80006-8
39.
39. S. S. Djokić, Electrodeposition: Theory and Practice. (Springer, 2010).
40.
40. N. G. Green, A. Ramos, A. González, H. Morgan, and A. Castellanos, Phys. Rev. E 61(4), 40114018 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.4011
41.
41. M. S. Arefin and T. L. Porter, Journal of Applied Physics 111(5) (2012).
http://dx.doi.org/10.1063/1.3693538
42.
42. A. Wlasenko, F. Soltani, D. Zakopcan, D. Sinton, and G. M. Steeves, Phys. Rev. E 81(2) (2010).
http://dx.doi.org/10.1103/PhysRevE.81.021601
43.
43. J. Jorne, Y.-J. Lii, and K. E. Yee, J. Electrochem. Soc. 134(6), 13991402 (1987).
http://dx.doi.org/10.1149/1.2100679
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4868518
Loading
/content/aip/journal/adva/4/3/10.1063/1.4868518
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4868518
2014-03-12
2016-09-27

Abstract

Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4868518.html;jsessionid=fpiwGOTIEwJsvjiz9dsFL0YQ.x-aip-live-02?itemId=/content/aip/journal/adva/4/3/10.1063/1.4868518&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/3/10.1063/1.4868518&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/3/10.1063/1.4868518'
Right1,Right2,Right3,