Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W.-D. Wang, Y. Hao, C.-L. Yi, X. Ji, and X.-Y. Niu, Acta Physica Sinica 61, 200207 (2012).
2. Y.-H. Zhang, Y.-B. Chen, K.-G. Zhou, C.-H. Liu, J. Zeng, H.-L. Zhang, and Y. Peng, Nanotechnology 20, 185504 (2009).
3. Q.-X. Pei, Y.-W. Zhang, and V. B. Shenoy, Carbon 48, 898 (2010).
4. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature 446, 60 (2007).
5. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007).
6. J. Zhou and R. Huang, J. Mech. Phys. Solids 56, 1609 (2008).
7. M. Poot and H. S. J. van der Zant, Appl. Phys. Lett. 92, 063111 (2008).
8. O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence, and T. Weng, J. Appl. Phys. 41, 3373 (1970).
9. I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, J. Vac. Sci. Technol. B 25, 2558 (2007).
10. C. Lee, X.-D. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
11. F. Liu, P.-B. Ming, and J. Li, Physical Review B 76, 064120 (2007).
12. A. Sakhaee-Pour, Solid State Communications 149, 91 (2009).
13. A. Sakhaee-Pour, Comput. Mater. Sci. 45, 266 (2009).
14. T.-W. Han, P.-F. He, J. Wang, and A.-H. Wu, New Carbon Materials 25, 261 (2010).
15. T.-W. Han, P.-F. He, Y. Luo, and X.-Y. Zhang, Advances In Mechanics 41, 279 (2011).
16. O. Hod and G. E. Scuseria, Nano Letters 9, 2619 (2009).
17. E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Phys. Rev. Lett. 102, 235502 (2009).
18. M. R. Begley and T. J. Mackin, J. Mech. Phys. Sol. 52, 2005 (2004).
19. U. Komaragiri, M. Begley, and J. Simmonds, J. Appl. Mech. 72, 203 (2005).
20. K. T. Wan, S. Guo, and D. A. Dillard, Thin Solid Films 425, 150 (2003).
21. L. X. Zhou, J. M. Xue, Y. G. Wang, and G. X. Cao, Carbon 63, 117 (2013).
22. X.-D. Yang, P.-F. He, A.-H. Wu, and B.-L. Zheng, Scientia Sinica: Phys., Mech., Astron. 40, 353 (2010).

Data & Media loading...


Article metrics loading...



Molecular Dynamics (MD) simulations of bending experiments have been carried out for graphene nanoribbons in order to measure their mechanical properties. Based on the continuum theory, one physical model is established for a double-clamped single layer rectangular graphene film and the relation between the centerline deflection and the concentrated force has been derived. During MD simulations, the Airebo potential is utilized to describe the C-C atomic interactions of graphene, and the concentrated radial forces were exerted on the centerline of a graphene nanoribbon. After the simulations, a set of Young's moduli is calculated based on the presented relation between the centerline deflection and the concentrated force, with an average value of 1.034 TPa, and the maximum stress of graphene is also obtained as 137.09 GPa.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd