Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/3/10.1063/1.4869017
1.
1. J. Y. Fan, X. L. Wu, and P. K. Chu, Progr. Mat. Sci. 51, 983 (2006).
http://dx.doi.org/10.1016/j.pmatsci.2006.02.001
2.
2. E. J. Connolly, H. T. M. Pham, J. Groeneweg, P. M. Sarro, and P. J. French, Sensor Actuator B 100, 216 (2004).
http://dx.doi.org/10.1016/j.snb.2003.12.064
3.
3. E. J. Connolly, B. Timmer, H. T. M. Pham, J. Groeneweg, P. M. Sarro, W. Olthuis, and P. J. French, Sensor Actuator B 109, 44 (2005).
http://dx.doi.org/10.1016/j.snb.2005.03.067
4.
4. A. J. Rosenbloom, S. Nie, Y. Ke, R. P. Devaty, and W. J. Choyke, Mater. Sci. Forum 527-529, 751 (2006).
http://dx.doi.org/10.4028/www.scientific.net/MSF.527-529.751
5.
5. M. Mynbaeva, A. Sitnikova, A. Tregubova, and K. Mynbaev, J. Cryst. Growth 303, 472 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.12.041
6.
6. J. S. Shor, I. Grimberg, B.-Z. Weiss, and A. D. Kurtz, Appl. Phys. Lett. 62, 2836 (1993).
http://dx.doi.org/10.1063/1.109226
7.
7. A. J. Stecki, J. N. Su, J. Xu, J. P. Li, C. Yuan, P. H. Yih, and H. C. Mogul, Appl. Phys. Lett. 64, 1419 (1994).
http://dx.doi.org/10.1063/1.111902
8.
8. A. M. Danishevskii, V. B. Shuman, E. G. Guk, and A. Yu. Rogachev, Semiconductors 31, 354 (1997).
http://dx.doi.org/10.1134/1.1187162
9.
9. V. P. Parkhutik, F. Namavar, and E. Andrade, Thin Solid Films 297, 229 (1997).
http://dx.doi.org/10.1016/S0040-6090(96)09422-9
10.
10. Z. Chen, M. Yu, J. Wang, and B. Hu, Chin. Phys. Lett. 16, 295 (1999).
http://dx.doi.org/10.1088/0256-307X/16/4/024
11.
11. R. M. Bayazitov, I. B. Khaibullin, R. I. Batalov, R. M. Nurutdinov, L. Kh. Antonova, V. P. Aksenov, and G. N. Mikhailova, Nucl. Instrum. Meth. B 206, 984 (2003)
http://dx.doi.org/10.1016/S0168-583X(03)00907-8
12.
12. A. Keffous, K. Bourenane, M. Kechouane, N. Gabouze, T. Kerdja, L. Guerbous, and S. Lafane, J. Lumin. 126, 561 (2007).
http://dx.doi.org/10.1016/j.jlumin.2006.10.024
13.
13. K. Bourenane, A. Keffous, M. Kechouache, G. Nezzal, A. Boukezzata, and T. Kerdja, Surf. Interface Anal. 40, 763 (2008).
http://dx.doi.org/10.1002/sia.2697
14.
14. D. T. Cao, C. T. Anh, N. T. T. Ha, H. T. Ha, B. Huy, P. T. M. Hoa, P. H. Duong, N. T. T. Ngan, and N. X. Dai, J. Phys. Conf. Ser. 187, 012023 (2009).
http://dx.doi.org/10.1088/1742-6596/187/1/012023
15.
15. H. T. M. Pham, Ph.D. thesis, Delft University of Technology, Delft, 2004.
16.
16. J. S. Shor and A. D. Kurtz, J. Electrochem. Soc. 141, 778 (1994).
http://dx.doi.org/10.1149/1.2054810
17.
17. W. Shin, W. Seo, O. Takai, and K. Koumoto, J. Electron. Mater. 27, 304 (1998).
http://dx.doi.org/10.1007/s11664-998-0405-8
18.
18. D. Zhuang and J. H. Edgar, Mat. Sci. Eng. R 48, 1 (2005).
http://dx.doi.org/10.1016/j.mser.2004.11.002
19.
19. A. Boukezzata, A. Keffous, A. Cheriet, Y. Belkacem, N. Gabouze, A. Manseri, G. Nezzal, M. Kechouane, A. Bright, L. Guerbous, and H. Menari, Appl. Surf. Sci. 256, 5592 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.03.037
20.
20. T. Nishimura, K. Miyoshi, F. Teramae, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, Phys. Status Solidi C 7, 2459 (2010).
http://dx.doi.org/10.1002/pssc.200983908
21.
21. G. Gautier, F. Cayrel, M. Capelle, J. Billoué, X. Song, and J.-F. Michaud, Nanoscale Res. Lett. 7, 367 (2012).
http://dx.doi.org/10.1186/1556-276X-7-367
22.
22. T. Omiya, A. Tanaka, and M. Shimomura, Jpn. J. Appl. Phys. 51, 075501 (2012).
23.
23. G. Gautier, J. Biscarrat, D. Valente, T. Defforge, A. Gary, and F. Cayrel, J. Electrochem. Soc. 160, D372 (2013).
http://dx.doi.org/10.1149/2.082309jes
24.
24. Y. Ke, F. Yan, R. P. Devaty, and W. J. Choyke, Mater. Sci. Forum 527-529, 739 (2006).
http://dx.doi.org/10.4028/www.scientific.net/MSF.527-529.739
25.
25. Y. Ke, Ph.D. thesis, University of Pittsburgh, Pittsburgh, 2007.
26.
26. Y. Shishkin, Y. Ke, R. P. Devaty, and W. J. Choyke, J. Appl. Phys. 97, 044908 (2005).
http://dx.doi.org/10.1063/1.1849432
27.
27. Y. Ke, R. P. Devaty, and W. J. Choyke, Electrochem. Solid-State Lett. 10, K24 (2007).
http://dx.doi.org/10.1149/1.2735820
28.
28. P. Newby, J.-M. Bluet, V. Aimez, L. G. Fréchette, and V. Lysenko, Phys. Status Solidi C 8, 1950 (2011).
http://dx.doi.org/10.1002/pssc.201000222
29.
29. L. Wang, H. Shao, X. Hu, and X. Xu, J. Mater. Sci. Technol. 29, 655 (2013).
http://dx.doi.org/10.1016/j.jmst.2013.03.017
30.
30. D. T. Cao, L. T. Q. Ngan, and C. T. Anh, Surf. Interface Anal. 45, 762 (2013).
http://dx.doi.org/10.1002/sia.5158
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869017
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869017
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869017
2014-03-17
2016-12-11

Abstract

In this report, we fabricated a porous layer in amorphous SiC thin films by using constant-current anodic etching in an electrolyte of aqueous diluted hydrofluoric acid. The morphology of the porous amorphous SiC layer changed as the anodic current density changed: At low current density, the porous layer had a low pore density and consisted of small pores that branched downward. At moderate current density, the pore size and depth increased, and the pores grew perpendicular to the surface, creating a columnar pore structure. At high current density, the porous structure remained perpendicular, the pore size increased, and the pore depth decreased. We explained the changes in pore size and depth at high current density by the growth of a silicon oxide layer during etching at the tips of the pores.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869017.html;jsessionid=m0MnjrqaPwNMaWs5oeLA9wSs.x-aip-live-02?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869017&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/3/10.1063/1.4869017&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/3/10.1063/1.4869017'
Right1,Right2,Right3,