Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Y. Fan, X. L. Wu, and P. K. Chu, Progr. Mat. Sci. 51, 983 (2006).
2. E. J. Connolly, H. T. M. Pham, J. Groeneweg, P. M. Sarro, and P. J. French, Sensor Actuator B 100, 216 (2004).
3. E. J. Connolly, B. Timmer, H. T. M. Pham, J. Groeneweg, P. M. Sarro, W. Olthuis, and P. J. French, Sensor Actuator B 109, 44 (2005).
4. A. J. Rosenbloom, S. Nie, Y. Ke, R. P. Devaty, and W. J. Choyke, Mater. Sci. Forum 527-529, 751 (2006).
5. M. Mynbaeva, A. Sitnikova, A. Tregubova, and K. Mynbaev, J. Cryst. Growth 303, 472 (2007).
6. J. S. Shor, I. Grimberg, B.-Z. Weiss, and A. D. Kurtz, Appl. Phys. Lett. 62, 2836 (1993).
7. A. J. Stecki, J. N. Su, J. Xu, J. P. Li, C. Yuan, P. H. Yih, and H. C. Mogul, Appl. Phys. Lett. 64, 1419 (1994).
8. A. M. Danishevskii, V. B. Shuman, E. G. Guk, and A. Yu. Rogachev, Semiconductors 31, 354 (1997).
9. V. P. Parkhutik, F. Namavar, and E. Andrade, Thin Solid Films 297, 229 (1997).
10. Z. Chen, M. Yu, J. Wang, and B. Hu, Chin. Phys. Lett. 16, 295 (1999).
11. R. M. Bayazitov, I. B. Khaibullin, R. I. Batalov, R. M. Nurutdinov, L. Kh. Antonova, V. P. Aksenov, and G. N. Mikhailova, Nucl. Instrum. Meth. B 206, 984 (2003)
12. A. Keffous, K. Bourenane, M. Kechouane, N. Gabouze, T. Kerdja, L. Guerbous, and S. Lafane, J. Lumin. 126, 561 (2007).
13. K. Bourenane, A. Keffous, M. Kechouache, G. Nezzal, A. Boukezzata, and T. Kerdja, Surf. Interface Anal. 40, 763 (2008).
14. D. T. Cao, C. T. Anh, N. T. T. Ha, H. T. Ha, B. Huy, P. T. M. Hoa, P. H. Duong, N. T. T. Ngan, and N. X. Dai, J. Phys. Conf. Ser. 187, 012023 (2009).
15. H. T. M. Pham, Ph.D. thesis, Delft University of Technology, Delft, 2004.
16. J. S. Shor and A. D. Kurtz, J. Electrochem. Soc. 141, 778 (1994).
17. W. Shin, W. Seo, O. Takai, and K. Koumoto, J. Electron. Mater. 27, 304 (1998).
18. D. Zhuang and J. H. Edgar, Mat. Sci. Eng. R 48, 1 (2005).
19. A. Boukezzata, A. Keffous, A. Cheriet, Y. Belkacem, N. Gabouze, A. Manseri, G. Nezzal, M. Kechouane, A. Bright, L. Guerbous, and H. Menari, Appl. Surf. Sci. 256, 5592 (2010).
20. T. Nishimura, K. Miyoshi, F. Teramae, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, Phys. Status Solidi C 7, 2459 (2010).
21. G. Gautier, F. Cayrel, M. Capelle, J. Billoué, X. Song, and J.-F. Michaud, Nanoscale Res. Lett. 7, 367 (2012).
22. T. Omiya, A. Tanaka, and M. Shimomura, Jpn. J. Appl. Phys. 51, 075501 (2012).
23. G. Gautier, J. Biscarrat, D. Valente, T. Defforge, A. Gary, and F. Cayrel, J. Electrochem. Soc. 160, D372 (2013).
24. Y. Ke, F. Yan, R. P. Devaty, and W. J. Choyke, Mater. Sci. Forum 527-529, 739 (2006).
25. Y. Ke, Ph.D. thesis, University of Pittsburgh, Pittsburgh, 2007.
26. Y. Shishkin, Y. Ke, R. P. Devaty, and W. J. Choyke, J. Appl. Phys. 97, 044908 (2005).
27. Y. Ke, R. P. Devaty, and W. J. Choyke, Electrochem. Solid-State Lett. 10, K24 (2007).
28. P. Newby, J.-M. Bluet, V. Aimez, L. G. Fréchette, and V. Lysenko, Phys. Status Solidi C 8, 1950 (2011).
29. L. Wang, H. Shao, X. Hu, and X. Xu, J. Mater. Sci. Technol. 29, 655 (2013).
30. D. T. Cao, L. T. Q. Ngan, and C. T. Anh, Surf. Interface Anal. 45, 762 (2013).

Data & Media loading...


Article metrics loading...



In this report, we fabricated a porous layer in amorphous SiC thin films by using constant-current anodic etching in an electrolyte of aqueous diluted hydrofluoric acid. The morphology of the porous amorphous SiC layer changed as the anodic current density changed: At low current density, the porous layer had a low pore density and consisted of small pores that branched downward. At moderate current density, the pore size and depth increased, and the pores grew perpendicular to the surface, creating a columnar pore structure. At high current density, the porous structure remained perpendicular, the pore size increased, and the pore depth decreased. We explained the changes in pore size and depth at high current density by the growth of a silicon oxide layer during etching at the tips of the pores.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd