Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/3/10.1063/1.4869018
1.
1. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
2.
2. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
3.
3. J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, Nature 464, 873 (2010).
http://dx.doi.org/10.1038/nature08940
4.
4. A. Sawa, Mater. Today 11, 28 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
5.
5. X. Y. Yang, S. B. Long, K. W. Zhang, X. Y. Liu, G. M. Wang, X. J. Lian, Q. Liu, H. B. Lv, M. Wang, H. W. Xie, H. T. Sun, P. X. Sun, J. Sun, and M. Liu, J. Phys. D: Appl. Phys. 46, 245107 (2013).
http://dx.doi.org/10.1088/0022-3727/46/24/245107
6.
6. M. S. Lee, S. Choi, C. H. An, and H. Kim, Appl. Phys. Lett. 100, 143504 (2012).
http://dx.doi.org/10.1063/1.3700728
7.
7. K. Szot, M. Rogala, W. Speier, Z. K. lusek, A. Besmehn, and R. Waser, Nanotechnol. 22, 254001 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254001
8.
8. D. S. Jeong, H. Schroeder, and R. Waser, Electrochem. Solid-State Lett. 10, 8 (2008).
9.
9. X. M. Chen, H. Zhou, G. H. Wu, and D. H. Bao, Appl. Phys. A 104, 477 (2011).
http://dx.doi.org/10.1007/s00339-011-6290-7
10.
10. X. M. Chen, G. H. Wu, P. Jiang, W. F. Liu, and D. H. Bao, Appl. Phys. Lett. 94, 033501 (2009).
http://dx.doi.org/10.1063/1.3073858
11.
11. T. Zhang, H. Chen, M. Ni, Z. H. Su, and W. F. Zhang, J. Appl. Phys. 105, 083708 (2009).
http://dx.doi.org/10.1063/1.3110034
12.
12. W. Hu, N. Qin, G. H. Wu, Y. T. Lin, S. W. Li, and D. H. Bao, J. Am. Chem. Soc. 134, 14658 (2012).
http://dx.doi.org/10.1021/ja305681n
13.
13. W. Hu, X. M. Chen, G. H. Wu, Y. T. Lin, N. Qin, and D. H. Bao, Appl. Phys. Lett. 101, 063501 (2012).
http://dx.doi.org/10.1063/1.4744950
14.
14. K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, Appl. Phys. Lett. 89, 103509 (2006).
http://dx.doi.org/10.1063/1.2339032
15.
15. B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. 98, 033715 (2005).
http://dx.doi.org/10.1063/1.2001146
16.
16. Z. G. Wang, W. G. Zhu, A. Y. Du, L. Wu, Z. Fang, X. A. Tran, W. J. Liu, K. L. Zhang, and H. Y. Yu, IEEE Trans. Electron Dev. 59, 4 (2012).
http://dx.doi.org/10.1109/TED.2011.2179612
17.
17. S. J. Kim, S. H. Jung, J. H. Oh, K. Ch. Ryoo, and B. G. Par, Proceedings of 5th IEEE International Nanoelectronics Conference, Sentosa, Singapore, 2-4 January, 2013, pp. 303305.
18.
18. Y. T. Li, H. B. Lv, Q. Liu, S. B. Long, M. Wang, H. W. Xie, K. W. Zhang, Z. L. Huo, and M. Liu, Nanoscale 5, 4785 (2013).
http://dx.doi.org/10.1039/c3nr33370a
19.
19. C. B. Lee, D. S. Lee, A. Benayad, S. R. Lee, M. Chang, M. J. Lee, J. Hur, Y. B. Kim, Ch. J. Kim, and U. Chung, IEEE Electron Dev. Lett. 32, 3 (2011).
http://dx.doi.org/10.1109/LED.2010.2087313
20.
20. J. Qi, J. Huang, D. Paul, J. Ren, S. Chu, and J. L. Liu, Nanoscale 5, 2651 (2013).
http://dx.doi.org/10.1039/c3nr00027c
21.
21. J. H. Yoon, J. H. Han, J. S. Jung, W. Jeon, G. H. Kim, S. J. Song, J. Y. Seok, K. J. Yoon, M. H. Lee, and C. S. Hwang, Adv. Mater. 25, 1987 (2013).
http://dx.doi.org/10.1002/adma.201204572
22.
22. S. K. Kim, B. J. Choi, K. J. Yoon, Y. W. Yoo, and C. S. Hwang, Appl. Phys. Lett. 102, 082903 (2013).
http://dx.doi.org/10.1063/1.4793577
23.
23. H. J. Wan, X. P. Tian, Y. L. Song, W. J. Luo, M. Wang, Y. L. Wang, P. Zhou, and Y. Y. Lin, Proceedings of 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, China, 1–4 November 2010, edited by Ting-Ao Tang and Yu-Long Jiang, pp. 11001102.
24.
24. H. J. Wan, P. Zhou, L. Ye, Y. Y. Lin, T. A. Tang, H. M. Wu, and M. H. Chi, IEEE Electron Dev. Lett. 31, 246 (2010).
http://dx.doi.org/10.1109/LED.2009.2039694
25.
25. K. M. Kim, B. J. Choi, M. H. Lee, G. H. Kim, S. J. Song, J. Y. Seok, J. H. Yoon, S. Han, and C. S. Hwang, Nanotechnol. 22, 254010 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254010
26.
26. Y. D. Xia, W. Y. He, L. Chen, X. K. Meng, and Z. G. Liu, Appl. Phys. Lett. 90, 022907 (2007).
http://dx.doi.org/10.1063/1.2430912
27.
27. J. G. Wu and J. Wang, J. Appl. Phys. 108, 034102 (2010).
http://dx.doi.org/10.1063/1.3460108
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869018
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869018
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869018
2014-03-17
2016-09-30

Abstract

We report uniform bipolar resistive switching characteristic with self-compliance effect of Pt/TiO/p-Si devices in which TiO thin films were prepared directly on p-Si substrates by chemical solution deposition method. The resistive switching parameters of the Pt/TiO/p-Si cell obtained, such as distribution of threshold voltages, retention time, as well as resistance variation of high resistance state (HRS) and low resistance state (LRS), were investigated, and the conduction mechanisms of HRS and LRS were analyzed. The conductive mechanism at LRS and low voltage region of HRS was dominated by Ohmic law. At the high voltage region of HRS, the conductive mechanism followed the space charge limited current theory. The resistive switching phenomenon can be explained by electron trapping and de-trapping process, in which the defects (most probably oxygen vacancies) act as electron traps. Our study suggests that using p-type silicon as bottom electrode can provide a simple method for fabricating a resistive random access memory with self-compliance function. In addition, the Pt/TiO/p-Si configuration is compatible with complementary metal oxide semiconductor process.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869018.html;jsessionid=SUdsTYOB1a-zcpGePNaqEM2x.x-aip-live-03?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869018&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/3/10.1063/1.4869018&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/3/10.1063/1.4869018'
Right1,Right2,Right3,