Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/3/10.1063/1.4869019
1.
1. M. Haruta, Catal. Today 36, 153 (1997).
http://dx.doi.org/10.1016/S0920-5861(96)00208-8
2.
2. M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).
http://dx.doi.org/10.1126/science.281.5383.1647
3.
3. G. J. Hutchings, M. Brust, and H. Schmidbaur, Chem. Soc. Rev. 37, 1759 (2008).
http://dx.doi.org/10.1039/b810747p
4.
4. S. Neukermans, E. Janssens, H. Tanaka, R. E. Silverans, and P. Lievens, Phys. Rev. Lett. 90, 033401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.90.033401
5.
5. I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, and H. Matsuda, Int. J. Mass Spectrom. Ion Processes 67, 229 (1985).
http://dx.doi.org/10.1016/0168-1176(85)80021-5
6.
6. P. Pyykkö and N. Runeberg, Angew. Chem. 114, 2278 (2002).
http://dx.doi.org/10.1002/1521-3757(20020617)114:12<2278::AID-ANGE2278>3.0.CO;2-F
7.
7. N. Shao, W. Huang, Y. Gao, L. M. Wang, X. Li, L. S. Wang, and X. C. Zeng, J. Am. Chem. Soc. 132, 6596 (2010).
http://dx.doi.org/10.1021/ja102145g
8.
8. S. Bulusu, X. Li, L. S. Wang, and X. C. Zeng, Proc. Natl. Acad. Sci. U.S.A. 103, 8326 (2006).
http://dx.doi.org/10.1073/pnas.0600637103
9.
9. A. Lechtken, C. Neiss, M. M. Kappes, and D. Schooss, Phys. Chem. Chem. Phys. 11, 4344 (2009).
http://dx.doi.org/10.1039/b821036e
10.
10. X. P. Xing, B. Yoon, U. Landman, and J. H. Parks, Phys. Rev. B 74, 165423 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.165423
11.
11. F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes, J. Chem. Phys. 117, 6982 (2002).
http://dx.doi.org/10.1063/1.1507582
12.
12. H. Häkkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, and L. S. Wang, J. Phys. Chem. A 107, 6168 (2003).
http://dx.doi.org/10.1021/jp035437i
13.
13. M. P. Johansson, A. Lechtken, D. Schooss, M. M. Kappes, and F. Furche, Phys. Rev. A 77, 053202 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.053202
14.
14. W. Huang and L. S. Wang, Phys. Rev. Lett. 102, 153401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.153401
15.
15. W. Fa, C. F. Luo, and J. M. Dong, Phys. Rev. B 72, 205428 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205428
16.
16. L. Xiao, B. Tollberg, X. K. Hu, and L. C. Wang, J. Chem. Phys. 124, 114309 (2006).
http://dx.doi.org/10.1063/1.2179419
17.
17. J. C. Idrobo, W. Walkosz, S. F. Yip, S. Öǧüt, J. L. Wang, and J. Jellinek, Phys. Rev. B 76, 205422 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205422
18.
18. M. Gruber, G. Heimel, L. Romaner, J. L. Bréas, and E. Zojer, Phys. Rev. B 77, 165411 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.165411
19.
19. B. Assadollahzadeh and P. Schwerdtfeger, J. Chem. Phys. 131, 064306 (2009).
http://dx.doi.org/10.1063/1.3204488
20.
20. M. Mantina, R. Valero, and D. G. Truhlar, J. Chem. Phys. 131, 064706 (2009).
http://dx.doi.org/10.1063/1.3190492
21.
21. H. Häkkinen, M. Moseler, and U. Landman, Phys. Rev. Lett. 89, 033401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.033401
22.
22. L. Xiao and L. Wang, Chem. Phys. Lett. 392, 452 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.05.095
23.
23. M. Heinebrodt, N. Malinowski, F. Tast, W. Branz, I. M. L. Billas, and T. P. Martin, J. Chem. Phys. 110, 9915 (1999).
http://dx.doi.org/10.1063/1.478865
24.
24. C. Majumder, A. K. Kandalam, and P. Jena, Phys. Rev. B 74, 205437 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205437
25.
25. W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, L. T. Kuhn, H. Weidele, P. Lievens, and R. E. Silverans, Chem. Phys. Lett. 314, 227 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01150-1
26.
26. H. Tanaka, S. Neukermans, E. Janssens, R. E. Silverans, and P. Lievens, J. Chem. Phys. 119, 7115 (2003).
http://dx.doi.org/10.1063/1.1606431
27.
27. E. Janssens, H. Tanaka, S. Neukermans, R. E. Silverans, and P. Lievens, Phys. Rev. B 69, 085402 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.085402
28.
28. X. Li, B. Kiran, L. F. Cui, and L. S. Wang, Phys. Rev. Lett. 95, 253401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.253401
29.
29. M. B. Torres, E. M. Fernández, and L. C. Balbás, Phys. Rev. B 71, 155412 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.155412
30.
30. M. X. Chen and X. H. Yan, J. Chem. Phys. 128, 174305 (2008).
http://dx.doi.org/10.1063/1.2916588
31.
31. M. Zhang, L. M. He, L. X. Zhao, X. J. Feng, and Y. H. Luo, J. Phys. Chem. C 113, 6491 (2009).
http://dx.doi.org/10.1021/jp811103u
32.
32. H. Q. Wang, X. Y. Kuang, and H. F. Li, J. Phys. Chem. A 113, 14022 (2009).
http://dx.doi.org/10.1021/jp908084u
33.
33. D. Die, X. Y. Kuang, J. J. Guo, and B. X. Zheng, Physica A 389, 5216 (2010).
http://dx.doi.org/10.1016/j.physa.2010.07.019
34.
34. M. Zhang, H. Y. Zhang, L. N. Zhao, Y. Li, and Y. H. Luo, J. Phys. Chem. A 116, 1493 (2012).
http://dx.doi.org/10.1021/jp2094406
35.
35. C. Majumder and S. K. Kulshreshtha, Phys. Rev. B 73, 155427 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.155427
36.
36. C. Majumder, Phys. Rev. B 75, 235409 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235409
37.
37. H. Wen, Y. R. Liu, T. Huang, K. M. Xu, W. J. Zhang, W. Huang, and L. S. Wang, J. Chem. Phys. 138, 174303 (2013).
http://dx.doi.org/10.1063/1.4802477
38.
38. W. Fa and J. M. Dong, J. Chem. Phys. 128, 144307 (2008).
http://dx.doi.org/10.1063/1.2897917
39.
39. L. M. Wang, R. Pal, W. Huang, X. C. Zeng, and L. S. Wang, J. Chem. Phys. 130, 051101 (2009).
http://dx.doi.org/10.1063/1.3073884
40.
40. Y. Gao, S. Bulusu, and X. C. Zeng, J. Am. Chem. Soc. 127, 15680 (2005).
http://dx.doi.org/10.1021/ja055407o
41.
41. L. M. Wang, S. Bulusu, H. J. Zhai, X. C. Zeng, and L. S. Wang, Angew. Chem. Int. Ed. 46, 2915 (2007).
http://dx.doi.org/10.1002/anie.200700060
42.
42. J. L. Wang, J. Bai, J. Jellinek, and X. C. Zeng, J. Am. Chem. Soc. 129, 4110 (2007).
http://dx.doi.org/10.1021/ja0664234
43.
43. J. Graciani, J. Oviedo, and J. F. Sanz, J. Phys. Chem. B 110, 11600 (2006).
http://dx.doi.org/10.1021/jp057322f
44.
44. L. M. Wang, J. Bai, A. Lechtken, W. Huang, D. Schooss, M. M. Kappes, X. C. Zeng, and L. S. Wang, Phys. Rev. B 79, 033413 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.033413
45.
45. Y. Gao, S. Bulusu, and X. C. Zeng, Chem. Phys. Chem. 7, 2275 (2006).
http://dx.doi.org/10.1002/cphc.200600472
46.
46. B. D. Yadav and V. Kumar, Appl. Phys. Lett. 97, 133701 (2010).
http://dx.doi.org/10.1063/1.3491269
47.
47. L. M. Wang, S. Bulusu, W. Huang, R. Pal, L. S. Wang, and X. C. Zeng, J. Am. Chem. Soc. 129, 15136 (2007).
http://dx.doi.org/10.1021/ja077465a
48.
48. Y. Negishi, Y. Nakamura, A. Nakajima, and K. Kaya, J. Chem. Phys. 115, 3657 (2001).
http://dx.doi.org/10.1063/1.1388036
49.
49. H. M. Lee, M. Ge, B. R. Sahu, P. Tarakeshwar, and K. S. Kim, J. Phys. Chem. B 107, 9994 (2003).
http://dx.doi.org/10.1021/jp034826+
50.
50. P. Weis, O. Welz, E. Vollmer, and M. M. Kappes, J. Chem. Phys. 120, 677 (2004).
http://dx.doi.org/10.1063/1.1630568
51.
51. V. Bonačič-Koutecký, J. Burda, R. Mitric, M. Ge, G. Zampella, and P. Fantucci, J. Chem. Phys. 117, 3120 (2002).
http://dx.doi.org/10.1063/1.1492800
52.
52. S. Chrétien, M. S. Gordon, and H. Metiu, J. Chem. Phys. 121, 9931 (2004).
http://dx.doi.org/10.1063/1.1809601
53.
53. M. Neumaier, F. Weigend, O. Hampe, and M. M. Kappes, J. Chem. Phys. 125, 104308 (2006).
http://dx.doi.org/10.1063/1.2348876
54.
54. G. F. Zhao and Z. Zeng, J. Chem. Phys. 125, 014303 (2006).
http://dx.doi.org/10.1063/1.2210470
55.
55. W. Huang, R. Pal, L. M. Wang, X. C. Zeng, and L. S. Wang, J. Chem. Phys. 132, 054305 (2010).
http://dx.doi.org/10.1063/1.3299292
56.
56. L. M. Wang, R. Pal, W. Huang, X. C. Zeng, and L. S. Wang, J. Chem. Phys. 132, 114306 (2010).
http://dx.doi.org/10.1063/1.3356046
57.
57. R. Pal, L. M. Wang, W. Huang, L. S. Wang, and X. C. Zeng, J. Chem. Phys. 134, 054306 (2011).
http://dx.doi.org/10.1063/1.3533443
58.
58. K. Bhattacharyya and C. Majumder, Chem. Phys. Lett. 446, 374 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.08.084
59.
59. V. Kumar and Y. Kawazoe, Phys. Rev. B 77, 205418 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.205418
60.
60. X. Liu, M. Bauer, H. Bertagnolli, E. Roduner, J. van Slageren, and F. Phillipp, Phys. Rev. Lett. 97, 253401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.253401
61.
61. M. N. Huda, M. K. Niranjan, B. R. Sahu, and L. Kleinman, Phys. Rev. A 73, 053201 (2006).
http://dx.doi.org/10.1103/PhysRevA.73.053201
62.
62. P. Błoński, S. Dennler, and J. Hafner, J. Chem. Phys. 134, 034107 (2011).
http://dx.doi.org/10.1063/1.3530799
63.
63. K. Koszinowski, D. Schröder, and H. Schwarz, Chem. Phys. Chem. 4, 1233 (2003).
http://dx.doi.org/10.1002/cphc.200300840
64.
64. D. W. Yuan, Y. Wang, and Z. Zeng, J. Chem. Phys. 122, 114310 (2005).
http://dx.doi.org/10.1063/1.1862239
65.
65. J. J. Guo, J. X. Yang, and D. Die, J. Mol. Struct. 764, 117 (2006).
http://dx.doi.org/10.1016/j.theochem.2006.02.011
66.
66. W. Q. Tian, M. F. Ge, F. L. Gu, T. Yamada, and Y. Aoki, J. Phys. Chem. A 110, 6285 (2006).
http://dx.doi.org/10.1021/jp055506o
67.
67. O. Olvera-Neria, A. Cruz, H. Luna-García, A. Anguiano-García, E. Poulain, and S. Castillo, J. Chem. Phys. 123, 164302 (2005).
http://dx.doi.org/10.1063/1.2079887
68.
68. C. R. Song, Q. F. Ge, and L. C. Wang, J. Phys. Chem. B 109, 22341 (2005).
http://dx.doi.org/10.1021/jp0546709
69.
69. Q. Ge, C. Song, and L. Wang, Comput. Mater. Sci. 35, 247 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.05.003
70.
70. M. M. Sadek and L. C. Wang, J. Phys. Chem. A 110, 14036 (2006).
http://dx.doi.org/10.1021/jp065286u
71.
71. L. C. Wang, Chem. Phys. Lett. 443, 304 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.06.069
72.
72. D. Mott, J. Luo, P. N. Njoki, Y. Lin, L. Wang, and C. J. Zhong, Catal. Today 122, 378 (2007).
http://dx.doi.org/10.1016/j.cattod.2007.01.007
73.
73. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
74.
74.Dmol is a Density Functional Theory Program Distributed by Accelrys Inc., 2006; B. Delley, J. Chem. Phys. 113, 7756 (2000).
http://dx.doi.org/10.1063/1.1316015
75.
75. B. Delley, Phys. Rev. B 66, 155125 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.155125
76.
76. M. J. Frisch, Gaussian 09 Revision A.01 Gaussian Inc., Pittsburgh, PA. (2009).
77.
77. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).
http://dx.doi.org/10.1063/1.448975
78.
78. Ph. Durand and J. C. Barthelat, Theor. Chim. Acta 38, 283 (1975).
http://dx.doi.org/10.1007/BF00963468
79.
79. B. Simard and P. Hackett, J. Mol. Spectrosc. 142, 310 (1990).
http://dx.doi.org/10.1016/0022-2852(90)90185-S
80.
80. M. D. Morse, Chem. Rev. 86, 1049 (1986).
http://dx.doi.org/10.1021/cr00076a005
81.
81. A. M. James, P. Kowalczyk, B. Simard, J. C. Pinegar, and M. D. Morse, J. Mol. Spectrosc. 168, 248 (1994).
http://dx.doi.org/10.1006/jmsp.1994.1275
82.
82. C. Jackschath, I. Rabin, W. Schulze, and Ber. Bunsenges, Phys. Chem. 86, 1200 (1992).
83.
83. M. B. Airola and M. D. Morse, J. Chem. Phys. 116, 1313 (2002).
http://dx.doi.org/10.1063/1.1428753
84.
84. S. Taylor, G. W. Lemire, Y. M. Hamrick, Z. Fu, and M. D. Morse, J. Chem. Phys. 89, 5517 (1988).
http://dx.doi.org/10.1063/1.455577
85.
85. J. C. Fabbi, J. D. Langenberg, Q. D. Costello, M. D. Morse, and L. Karlsson, J. Chem. Phys. 115, 7543 (2001).
http://dx.doi.org/10.1063/1.1407273
86.
86.See supplementary material at http://dx.doi.org/10.1063/1.4869019 for the atomic coordinates of the lowest energy structures. [Supplementary Material]
87.
87. J. Yang, J. Y. Lee, and H. P. Too, Plasmonics 1, 67 (2006).
http://dx.doi.org/10.1007/s11468-005-9003-2
88.
88. A. Henglein, J. Phys. Chem. B 104, 2432 (2000).
http://dx.doi.org/10.1021/jp000682c
89.
89. J. H. Hodak, A. Henglein, and G. V. Hartland, J. Chem. Phys. 114, 2760 (2001).
http://dx.doi.org/10.1063/1.1339266
90.
90. E. Bus and J. A. van Bokhoven, J. Phys. Chem. C 111, 9761 (2007).
http://dx.doi.org/10.1021/jp067414k
91.
91. S. Xiao, W. Hu, W. Luo, Y. Wu, X. Li, and H. Deng, Eur. Phys. J. B 54, 479 (2006).
http://dx.doi.org/10.1140/epjb/e2007-00018-6
92.
92. Z. Yang, X. N. Yang, and Z. J. Xu, J. Phys. Chem. C 112, 4937 (2008).
http://dx.doi.org/10.1021/jp711702y
93.
93. H. B. Liu, U. Pal, and J. A. Ascencio, J. Phys. Chem. C 112, 19173 (2008).
http://dx.doi.org/10.1021/jp802804u
94.
94. Z. Yang, X. N. Yang, Z. J. Xu, and S. Y. Liu, Phys. Chem. Chem. Phys. 11, 6249 (2009).
http://dx.doi.org/10.1039/b821328c
95.
95. B. H. Morrow and A. Striolo, Phys. Rev. B 81, 155437 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155437
96.
96. L. Deng, W. Y. Hu, H. Q. Deng, and S. F. Xiao, J. Phys. Chem. C 114, 11026 (2010).
http://dx.doi.org/10.1021/jp100194p
97.
97. R. Huang, Y. H. Wen, G. F. Shao, and S. G. Sun, J. Phys. Chem. C 117, 4278 (2013).
http://dx.doi.org/10.1021/jp312048k
98.
98. L. Leppert and S. Kummel, J. Phys. Chem. C 115, 6694 (2011).
http://dx.doi.org/10.1021/jp112224t
99.
99. L. Leppert, R. Q. Albuquerque, A. S. Foster, and S. Kümmel, J. Phys. Chem. C (2013).
http://dx.doi.org/10.1021/jp404341v
100.
100. M. M. Hu, D. L. Linder, M. B. Nardelli, and A. Striolo, J. Phys. Chem. C 117, 15050 (2013).
http://dx.doi.org/10.1021/jp3126285
101.
101. Z. Crljen, P. Lazic, D. Sokcevic, and R. Brako, Phys. Rev. B 68, 195411 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.195411
102.
102. S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes, J. Chem. Phys. 116, 4094 (2002).
http://dx.doi.org/10.1063/1.1445121
103.
103. K. Koyasu, Y. Naono, M. Akutsu, M. Mitsui, and A. Nakajima, Chem. Phys. Lett. 422, 62 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.02.034
104.
104. K. Koyasu, M. Mitsui, A. Nakajima, and K. Kaya, Chem. Phys. Lett. 358, 224 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00562-6
105.
105. Z. J. Wu, S. H. Zhou, J. S. Shi, and S. Y. Zhang, Chem. Phys. Lett. 368, 153 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)01827-4
106.
106. B. R. Sahu, G. Maofa, and L. Kleinman, Phys. Rev. B 67, 115420 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.115420
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869019
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869019
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869019
2014-03-17
2016-09-28

Abstract

The structural evolutions and electronic properties of bimetallic Au Pt ( = 2–14; ) clusters are investigated by using the density functional theory (DFT) with the generalized gradient approximation (GGA). The monatomic doping Au Pt clusters are emphasized and compared with the corresponding pristine Au clusters. The results reveal that the planar configurations are favored for both Au Pt and Au clusters with size up to = 13, and the former often employ the substitution patterns based on the structures of the latter. The most stable clusters are Au and Au Pt, which adopt regular planar triangle ( ) and hexagon-ring ( ) structures and can be regarded as the preferential building units in designing large clusters. For Pt-rich bimetallic clusters, their structures can be obtained from the substitution of Pt atoms by Au atoms from the Pt structures, where Pt atoms assemble together and occupy the center yet Au atoms prefer the apex positions showing a segregation effect. With respect to pristine Au clusters, Au Pt clusters exhibit somewhat weaker and less pronounced odd-even oscillations in the highest occupied and lowest unoccupied molecular-orbital gaps (HOMO-LUMO gap), electron affinity (EA), and ionization potential (IP) due to the partially released electron pairing effect. The analyses of electronic structure indicate that Pt atoms in AuPt clusters would delocalize their one 6 and one 5 electrons to contribute the electronic shell closure. The - hybridizations as well as the - interactions between the host Au and dopant Pt atoms result in the enhanced stabilities of AuPt clusters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869019.html;jsessionid=Cjuj-vj7D2WCulcZXK1cRD2p.x-aip-live-03?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869019&mimeType=html&fmt