1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Effect of ambient gas pressure and nature on the temporal evolution of aluminum laser-induced plasmas
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/3/10.1063/1.4869076
1.
1. J. A. Aguilera and C. Aragon, Spectrochim. Acta B 63(7), 784 (2008).
http://dx.doi.org/10.1016/j.sab.2008.04.012
2.
2. S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, J. Appl. Phys. 82(5), 2140 (1997).
http://dx.doi.org/10.1063/1.366276
3.
3. L. Torrisi, F. Caridi, A. Picciotto, and A. Borrielli, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 252(2), 183 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.07.004
4.
4. W. Sdorra and K. Niemax, Spectrochim. Acta B 45(8), 917 (1990).
http://dx.doi.org/10.1016/0584-8547(90)80146-A
5.
5. Y. Iida, Spectrochim. Acta B 45, 1353 (1990).
http://dx.doi.org/10.1016/0584-8547(90)80188-O
6.
6. N. M. Shaikh, S. Hafeez, and M. A. Baig, Spectrochim. Acta B 62, 1311 (2007).
http://dx.doi.org/10.1016/j.sab.2007.10.028
7.
7. J. S. Cowpe, R. D. Pilkington, J. S. Astin and A. E. Ahil, J. Phys. D Appl. Phys. 42, 165202 (2009).
http://dx.doi.org/10.1088/0022-3727/42/16/165202
8.
8. F. Rezaei and S. H. Tavassoli, Spectrochim. Acta B 78, 29 (2012).
http://dx.doi.org/10.1016/j.sab.2012.09.006
9.
9. A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, S. Amoruso, and O. De Pascale, Acta B 78, 1 (2012).
10.
10. Y. Lee, K. Song, and J. Sneddon, “Laser induced plasmas for analytical atomic spectroscopy” ch. 5 in Lasers Analytical Atomic Spectroscopy, J. Sneddon et al. (Eds.), New York: VCH, 197–235 (1997).
11.
11. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, Spectrochim. Acta part B 57, 1115 (2002).
http://dx.doi.org/10.1016/S0584-8547(02)00053-8
12.
12. C. C. Garcia, J. M. Vadillo, S. Palanco, J. Ruiz, and J. J. Laserna, Spectrochim. Acta part B 56, 923 (2001).
http://dx.doi.org/10.1016/S0584-8547(01)00196-3
13.
13. W. Sdorra and K. Niemax, Mikrochim. Acta 107, 319 (1992).
http://dx.doi.org/10.1007/BF01244487
14.
14. X. L. Mao, W. T. Chan, M. A. Shannon, and R. E. Russo, J. Appl. Phys. 74, 4915 (1993).
http://dx.doi.org/10.1063/1.354325
15.
15. H. Lindnera, K. H. Loperb, D. W. Hahnb and K. Niemax, Spectrochim. Acta B 66, 179 (2011).
http://dx.doi.org/10.1016/j.sab.2011.01.002
16.
16. S. Bashir, N. Farid, K. Mahmood, and M. S. Rafique, Appl. Phys. A 107, 203 (2012).
http://dx.doi.org/10.1007/s00339-011-6730-4
17.
17. G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, Spectrochim. Acta B 60, 1132 (2005).
http://dx.doi.org/10.1016/j.sab.2005.05.035
18.
18. A. K. Knight, N. L. Scharbarth, D. A. Cremers, and M. J. Ferris, Appl. Spectrosc. 54, 331 (2000).
http://dx.doi.org/10.1366/0003702001949591
19.
19. O. Barthelemy, J. Margot, S. Laville, F. Vidal, M. Chaker, B. Le Drogoff, T. W. Johnston, and M. Sabsabi, Appl. Spectrosc. 59, 529 (2005).
http://dx.doi.org/10.1366/0003702053641531
20.
20. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).
21.
21. J. Hermann, S. Bruneau, Thin Solid Films 453–454, 377 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.181
22.
22. N. Farid, S. Bashir, and K. Mahmood, Phys. Scr. 85, 015702 (2012).
http://dx.doi.org/10.1088/0031-8949/85/01/015702
23.
23. Q. L. Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, Spectrochim. Acta B 65, 896 (2010).
http://dx.doi.org/10.1016/j.sab.2010.08.005
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869076
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869076
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869076
2014-03-19
2014-11-28

Abstract

Time-resolved analysis of emission spectra, electron densities and excitation temperatures of Aluminum laser induced plasmas produced in argon, nitrogen and helium at different pressures have been studied experimentally. The plasma emission intensity is found to be strongly affected by the plume confinement and differs with the nature of the ambient gas and its pressure. Our observations show that both electron density and excitation temperature increase with the ambient gas pressure. In addition, Argon was found to produce the highest plasma density and temperature and Helium the lowest, while Nitrogen yields intermediate values.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869076.html;jsessionid=dk97cvyq3vfj.x-aip-live-06?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869076&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of ambient gas pressure and nature on the temporal evolution of aluminum laser-induced plasmas
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869076
10.1063/1.4869076
SEARCH_EXPAND_ITEM