1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Enhanced magnetic behavior, exchange bias effect, and dielectric property of BiFeO3 incorporated in (BiFeO3)0.50 (Co0.4Zn0.4Cu0.2 Fe2O4)0.5 nanocomposite
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/3/10.1063/1.4869077
1.
1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London). 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
2.
2. F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M. P. Cruz, P. L. Yang, D. Hao, and R. Ramesh, Nano Lett. 7, 1586 (2007).
http://dx.doi.org/10.1021/nl070465o
3.
3. N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).
http://dx.doi.org/10.1126/science.1113357
4.
4. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
http://dx.doi.org/10.1021/jp000114x
5.
5. I. Kornev, M. Bichurin, J. P. Rivera, S. Gentil, H. Schmid, A. G. M. Jansen, and P. Wyder, Phys. Rev. B 62, 12247 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.12247
6.
6. M. B. Kothale, K. K. Patankar, S. L. Kadam, V. L. Mathe, A. V. Rao, and B. K. Chougule, Mater. Chem. Phys. 77, 691 (2002).
http://dx.doi.org/10.1016/S0254-0584(02)00135-9
7.
7. H. Schmid, Ferroelectrics. 162, 317 (1994).
http://dx.doi.org/10.1080/00150199408245120
8.
8. M. M. Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayan, Appl. Phys. Lett. 76, 2764 (2000).
http://dx.doi.org/10.1063/1.126468
9.
9. J. V. Rivera and H. Schmid, Ferroelectrics. 204, 23 (1997).
http://dx.doi.org/10.1080/00150199708222185
10.
10. R. Ramesh, US Patent No 0029592 (2007).
11.
11. M. Kondo, US Patent No 0045595 (2007).
12.
12. H. Miyazawa, T. Higuchi, and S. Iwashita, US Patent No 0017269 (2005).
13.
13. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature. 432, 84 (2004).
http://dx.doi.org/10.1038/nature03028
14.
14. M. M. Kumar, A. Srinivas, G. S. Kumar, and S. V. Suryanarayana, J. Phys., Condens. Matter. 11, 8131 (1999).
http://dx.doi.org/10.1088/0953-8984/11/41/315
15.
15. M. Polomska, W. Kaczmarek, and Z. Pajak, Phys. Status Solidi A Appl. Res. 23, 567 (1974).
http://dx.doi.org/10.1002/pssa.2210230228
16.
16. C. W. Nan, Phys. Rev. B 50, 6082 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.6082
17.
17. J. Van den. Boomgaard and R. A. J. Born, J. Mater. Sci. 13, 1538 (1978).
http://dx.doi.org/10.1007/BF00553210
18.
18. J. Van den. Boomgaard, A. M. J. G. Van Run, and J. Van. Suchetelene, Ferroelectrics. 10, 295 (1976).
http://dx.doi.org/10.1080/00150197608241997
19.
19. K. Srinivas, G. Prasad, T. Bhimasankaram, and S. V. Suryanarayana, Mod. Phys. Lett. B 14, 663 (2000).
http://dx.doi.org/10.1142/S021798490000080X
20.
20. J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, Jpn. J. Appl. Phys. Part 1 40, 4948 (2001).
http://dx.doi.org/10.1143/JJAP.40.4948
21.
21. G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, Phys. Rev. B 64, 214408 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.214408
22.
22. M. Kumar and K. L. Yadav, J. Phys. and Chem. of Solids. 68, 1791 (2007).
http://dx.doi.org/10.1016/j.jpcs.2007.05.006
23.
23. J. Y. Zha, N. Cai, L. Liu, Y. H. Lin, and C. W. Nan, Mater. Sci. Eng. B 99, 329 (2003).
http://dx.doi.org/10.1016/S0921-5107(02)00565-2
24.
24. G. Harshe, J. P. Dougherty, and R. E. Newnham, Math. Smart Struct. 1919, 224 (1993).
25.
25. X. M. Liu, S. Y. Fu, and C. Huang, J. Mater. Sci. Eng. B 121, 255 (2005).
http://dx.doi.org/10.1016/j.mseb.2005.04.009
26.
26. M. Kumar and K. L. Yadav, Mater. Lett. 08, 020 (2006).
27.
27. P. Borisov, A. Hochstrat, Xi. Chen, W. Kleemann, and C. Binek, Phys. Rev. Lett. 94, 117203 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.117203
28.
28. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suri˜nach, J. S. Mu˜noz, and M. D. Baró, Phys. Rep. 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
29.
29. H. Ahmadvand, H. Salamati, P. Kameli, A. Poddar, M. Acet, and K. Zakeri, J. Phys. D: Appl. Phys. 43, 245002 (2010).
http://dx.doi.org/10.1088/0022-3727/43/24/245002
30.
30. S. A. Makhlouf, H. Al. Attar, and R. H. Kodama, Solid State Commun. 145, 1 (2008).
http://dx.doi.org/10.1016/j.ssc.2007.10.019
31.
31. E. L. Salabas, A. Rumplecker, F. Kleitz, F. Radu, and F. Schöuth, Nano Lett. 6, 2977 (2006).
http://dx.doi.org/10.1021/nl060528n
32.
32. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.174420
33.
33. S. A. Makhlouf, J. Magn. Magn. Mater. 1530, 272 (2004).
34.
34. S. A. Makhlouf, F. T. Parker, and A. E. Berkowitz, Phys. Rev. B 55, R14717 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R14717
35.
35. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
36.
36. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00266-2
37.
37. Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Nature Mater. 7, 478 (2008).
http://dx.doi.org/10.1038/nmat2184
38.
38. S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Nature Mater. 9, 756 (2010).
http://dx.doi.org/10.1038/nmat2803
39.
39. H. Béa, M. Bibes, F. Ott, B. Dupé, X. H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, and A. Barthélémy, Phys. Rev. Lett. 100, 017204 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.017204
40.
40. L. W. Martin, Y. H. Chu, M. B. Holcomb, M. Huijben, P. Yu, S. J. Han, D. Lee, S. X. Wang, and R. Ramesh, Nano Lett. 8, 2050 (2008).
http://dx.doi.org/10.1021/nl801391m
41.
41. P. Yu, J. S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C. H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y. H. Chu, D. A. Arena, C. C. Kao, L. W. Martin, and R. Ramesh, Phys. Rev. Lett. 105, 027201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.027201
42.
42. R. Mazumder, P. Sujatha Devi, D. Bhattacharya, P. Choudhury, A. Sen, and M. Raja, Appl. Phys. Lett. 91, 062510 (2007).
http://dx.doi.org/10.1063/1.2768201
43.
43. T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett. 7, 766 (2007).
http://dx.doi.org/10.1021/nl063039w
44.
44. T. L. Qu, Y. G. Zhao, P. Yu, H. C. Zhao, S. Zhang, and L. F. Yang, Appl. Phys. Lett. 100, 242410 (2012).
http://dx.doi.org/10.1063/1.4729408
45.
45. S. Acharya, S. Sutradhar, J. Mandal, K. Mukhopadhyay, A. K. Deb, and P. K. Chakrabarti, J. Magn. Magn. Mater. 324, 4209 (2012).
http://dx.doi.org/10.1016/j.jmmm.2012.07.045
46.
46. J. Rodríguez-Carvajal, Physica B 192, 55 (1993).
http://dx.doi.org/10.1016/0921-4526(93)90108-I
47.
47. K. Mukhopadhyay, S. Sutradhar, S. Modak, S. K. Roy, and P. K. Chakrabarti, J. Phys. Chem. C 116, 4948 (2012).
http://dx.doi.org/10.1021/jp2065216
48.
48. S. Mukherjee, D. Das, S. Mukherjee, and P. K. Chakrabarti, J. Phys. Chem. C 114, 14763 (2010).
http://dx.doi.org/10.1021/jp104535v
49.
49. P. P. Vaishnava, U. Senaratne, E. C. Buc, R. Naik, V. M. Naik, G. M. Tsoi, and L. E. Wenger, Phys. Rev. B 76, 024413 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.024413
50.
50. D. Peddis, M. V. Mansilla, S. Morup, C. Cannas, A. Musinu, G. Piccaluga, F. Orazio, F. Lucari, and D. Fiorani, J. Phys. Chem. B 112, 8507 (2008).
http://dx.doi.org/10.1021/jp8016634
51.
51. A. J. Rondinone, A. C. S. Samia, and Z. J. Zhang, J. Phys. Chem. B 103, 6876 (1999).
http://dx.doi.org/10.1021/jp9912307
52.
52. G. Zhen, B. W. Muir, B. A. Moffat, P. Harbour, K. S. Murray, B. Moubaraki, K. Suzuki, I. Madsen, N. Agron-Olshina, L. Waddington, P. Mulvaney, and P. G. Hartley, J. Phys. Chem. C 115, 327 (2011).
http://dx.doi.org/10.1021/jp104953z
53.
53. S. Modak, S. Karan, S. K. Roy, and P. K. Chakrabarti, J. Appl. Phys. 108, 093912 (2010).
http://dx.doi.org/10.1063/1.3499644
54.
54. M. Respaud, J. M. Broto, H. Rakoto, A. R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T. O. Ely, C. Amiens, and B. Chaudret, Phys. Rev. B 57, 2925 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.2925
55.
55. E. P. Wohlfarth, Phys. Lett. A 70, 489 (1979).
http://dx.doi.org/10.1016/0375-9601(79)90375-X
56.
56. J. Keller, P. Miltényi, B. Beschoten, G. Güntherodt, U. Nowak, and K. D. Usadel, Phys. Rev. B 66, 014430 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.014431
57.
57. A. E. Berkowitz, G. F. Rodriguez, J. I. Hong, K. An, T. Hyeon, N. Agarwal, D. J. Smith, and E. E. Fullerton, Phys. Rev. B 77, 024403 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.024403
58.
58. J. C. Maxwell, Electricity and Magnetism (Oxford University Press Section 328, 1954), Vol. 1.
59.
59. C. G. Koop, Phys. Rev. 83, 121 (1951).
http://dx.doi.org/10.1103/PhysRev.83.121
60.
60. S. N. Babu, J. H. Hsu, Y. S. Chen, and J. G. Lin, J. Appl. Phys. 107, 09D919 (2010).
http://dx.doi.org/10.1063/1.3360353
61.
61. H. W. Zhang, H. Zhong, B. Y. Liu, Y. L. Jing, and Y. Y. Liu, IEEE Trans. Magn. 41, 3454 (2005).
http://dx.doi.org/10.1109/TMAG.2005.854882
62.
62. Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, and J. Yang, J Mater. Sci: Mater Electron. (2012).
63.
63. L. Mitoseriu, M. Viviani, M. T. Buscaglia, V. Buscaglia, and P. Nanni, J. of Optoelectronics and Adv. Mat. 10, 2373 (2008).
64.
64. W. M. Zhu and Z. G. Ye, Ceram. International. 30, 1435 (2004).
http://dx.doi.org/10.1016/j.ceramint.2003.12.072
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869077
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869077
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869077
2014-03-18
2014-10-25

Abstract

Nanoparticles of BiFeO (BFO) are incorporated in the nanocomposite of (BiFeO) (CoZnCu FeO), (BFO-CZCF) and these are prepared by chemical route. The formation of pure crystallographic phase of each component (BFO and CZCF) in the nanocomposite of BFO-CZCF has been confirmed by Rietveld analysis of the X-ray diffractograms using FULLPROF program. Morphology, average particle size and its distribution, crystallographic phase etc. are obtained from the high-resolution transmission electron microscopy of BFO-CZCF. Magnetic measurements of BFO-CZCF have been carried out to explore the modulation of magnetic behavior of BFO in BFO-CZCF. Interestingly, magnetization of BFO-CZCF has been drastically enhanced compared to that of the pristine BFO. An exchange bias effect is also observed in the M vs. H loops of BFO-CZCF recorded in field cooled and zero field cooled conditions, which suggest that nanoparticles of BFO (AFM) are encapsulated by nanoparticles of CZCF (FM) in BFO-CZCF. Thermal variation of dielectric constant of BFO-CZCF is recorded in the range of 300 to 1073 K and a ferroelectric to paraelectric transition is observed at ∼728 K. Enhanced magnetic property of BFO would quite interesting for this important multiferroic.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869077.html;jsessionid=6pamgcteyrfk.x-aip-live-06?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869077&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced magnetic behavior, exchange bias effect, and dielectric property of BiFeO3 incorporated in (BiFeO3)0.50 (Co0.4Zn0.4Cu0.2 Fe2O4)0.5 nanocomposite
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869077
10.1063/1.4869077
SEARCH_EXPAND_ITEM