Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London). 442, 759 (2006).
2. F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M. P. Cruz, P. L. Yang, D. Hao, and R. Ramesh, Nano Lett. 7, 1586 (2007).
3. N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).
4. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
5. I. Kornev, M. Bichurin, J. P. Rivera, S. Gentil, H. Schmid, A. G. M. Jansen, and P. Wyder, Phys. Rev. B 62, 12247 (2000).
6. M. B. Kothale, K. K. Patankar, S. L. Kadam, V. L. Mathe, A. V. Rao, and B. K. Chougule, Mater. Chem. Phys. 77, 691 (2002).
7. H. Schmid, Ferroelectrics. 162, 317 (1994).
8. M. M. Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayan, Appl. Phys. Lett. 76, 2764 (2000).
9. J. V. Rivera and H. Schmid, Ferroelectrics. 204, 23 (1997).
10. R. Ramesh, US Patent No 0029592 (2007).
11. M. Kondo, US Patent No 0045595 (2007).
12. H. Miyazawa, T. Higuchi, and S. Iwashita, US Patent No 0017269 (2005).
13. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature. 432, 84 (2004).
14. M. M. Kumar, A. Srinivas, G. S. Kumar, and S. V. Suryanarayana, J. Phys., Condens. Matter. 11, 8131 (1999).
15. M. Polomska, W. Kaczmarek, and Z. Pajak, Phys. Status Solidi A Appl. Res. 23, 567 (1974).
16. C. W. Nan, Phys. Rev. B 50, 6082 (1994).
17. J. Van den. Boomgaard and R. A. J. Born, J. Mater. Sci. 13, 1538 (1978).
18. J. Van den. Boomgaard, A. M. J. G. Van Run, and J. Van. Suchetelene, Ferroelectrics. 10, 295 (1976).
19. K. Srinivas, G. Prasad, T. Bhimasankaram, and S. V. Suryanarayana, Mod. Phys. Lett. B 14, 663 (2000).
20. J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, Jpn. J. Appl. Phys. Part 1 40, 4948 (2001).
21. G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, Phys. Rev. B 64, 214408 (2001).
22. M. Kumar and K. L. Yadav, J. Phys. and Chem. of Solids. 68, 1791 (2007).
23. J. Y. Zha, N. Cai, L. Liu, Y. H. Lin, and C. W. Nan, Mater. Sci. Eng. B 99, 329 (2003).
24. G. Harshe, J. P. Dougherty, and R. E. Newnham, Math. Smart Struct. 1919, 224 (1993).
25. X. M. Liu, S. Y. Fu, and C. Huang, J. Mater. Sci. Eng. B 121, 255 (2005).
26. M. Kumar and K. L. Yadav, Mater. Lett. 08, 020 (2006).
27. P. Borisov, A. Hochstrat, Xi. Chen, W. Kleemann, and C. Binek, Phys. Rev. Lett. 94, 117203 (2005).
28. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suri˜nach, J. S. Mu˜noz, and M. D. Baró, Phys. Rep. 422, 65 (2005).
29. H. Ahmadvand, H. Salamati, P. Kameli, A. Poddar, M. Acet, and K. Zakeri, J. Phys. D: Appl. Phys. 43, 245002 (2010).
30. S. A. Makhlouf, H. Al. Attar, and R. H. Kodama, Solid State Commun. 145, 1 (2008).
31. E. L. Salabas, A. Rumplecker, F. Kleitz, F. Radu, and F. Schöuth, Nano Lett. 6, 2977 (2006).
32. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2001).
33. S. A. Makhlouf, J. Magn. Magn. Mater. 1530, 272 (2004).
34. S. A. Makhlouf, F. T. Parker, and A. E. Berkowitz, Phys. Rev. B 55, R14717 (1997).
35. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
36. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
37. Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Nature Mater. 7, 478 (2008).
38. S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Nature Mater. 9, 756 (2010).
39. H. Béa, M. Bibes, F. Ott, B. Dupé, X. H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, and A. Barthélémy, Phys. Rev. Lett. 100, 017204 (2008).
40. L. W. Martin, Y. H. Chu, M. B. Holcomb, M. Huijben, P. Yu, S. J. Han, D. Lee, S. X. Wang, and R. Ramesh, Nano Lett. 8, 2050 (2008).
41. P. Yu, J. S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C. H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y. H. Chu, D. A. Arena, C. C. Kao, L. W. Martin, and R. Ramesh, Phys. Rev. Lett. 105, 027201 (2010).
42. R. Mazumder, P. Sujatha Devi, D. Bhattacharya, P. Choudhury, A. Sen, and M. Raja, Appl. Phys. Lett. 91, 062510 (2007).
43. T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett. 7, 766 (2007).
44. T. L. Qu, Y. G. Zhao, P. Yu, H. C. Zhao, S. Zhang, and L. F. Yang, Appl. Phys. Lett. 100, 242410 (2012).
45. S. Acharya, S. Sutradhar, J. Mandal, K. Mukhopadhyay, A. K. Deb, and P. K. Chakrabarti, J. Magn. Magn. Mater. 324, 4209 (2012).
46. J. Rodríguez-Carvajal, Physica B 192, 55 (1993).
47. K. Mukhopadhyay, S. Sutradhar, S. Modak, S. K. Roy, and P. K. Chakrabarti, J. Phys. Chem. C 116, 4948 (2012).
48. S. Mukherjee, D. Das, S. Mukherjee, and P. K. Chakrabarti, J. Phys. Chem. C 114, 14763 (2010).
49. P. P. Vaishnava, U. Senaratne, E. C. Buc, R. Naik, V. M. Naik, G. M. Tsoi, and L. E. Wenger, Phys. Rev. B 76, 024413 (2007).
50. D. Peddis, M. V. Mansilla, S. Morup, C. Cannas, A. Musinu, G. Piccaluga, F. Orazio, F. Lucari, and D. Fiorani, J. Phys. Chem. B 112, 8507 (2008).
51. A. J. Rondinone, A. C. S. Samia, and Z. J. Zhang, J. Phys. Chem. B 103, 6876 (1999).
52. G. Zhen, B. W. Muir, B. A. Moffat, P. Harbour, K. S. Murray, B. Moubaraki, K. Suzuki, I. Madsen, N. Agron-Olshina, L. Waddington, P. Mulvaney, and P. G. Hartley, J. Phys. Chem. C 115, 327 (2011).
53. S. Modak, S. Karan, S. K. Roy, and P. K. Chakrabarti, J. Appl. Phys. 108, 093912 (2010).
54. M. Respaud, J. M. Broto, H. Rakoto, A. R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T. O. Ely, C. Amiens, and B. Chaudret, Phys. Rev. B 57, 2925 (1998).
55. E. P. Wohlfarth, Phys. Lett. A 70, 489 (1979).
56. J. Keller, P. Miltényi, B. Beschoten, G. Güntherodt, U. Nowak, and K. D. Usadel, Phys. Rev. B 66, 014430 (2002).
57. A. E. Berkowitz, G. F. Rodriguez, J. I. Hong, K. An, T. Hyeon, N. Agarwal, D. J. Smith, and E. E. Fullerton, Phys. Rev. B 77, 024403 (2008).
58. J. C. Maxwell, Electricity and Magnetism (Oxford University Press Section 328, 1954), Vol. 1.
59. C. G. Koop, Phys. Rev. 83, 121 (1951).
60. S. N. Babu, J. H. Hsu, Y. S. Chen, and J. G. Lin, J. Appl. Phys. 107, 09D919 (2010).
61. H. W. Zhang, H. Zhong, B. Y. Liu, Y. L. Jing, and Y. Y. Liu, IEEE Trans. Magn. 41, 3454 (2005).
62. Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, and J. Yang, J Mater. Sci: Mater Electron. (2012).
63. L. Mitoseriu, M. Viviani, M. T. Buscaglia, V. Buscaglia, and P. Nanni, J. of Optoelectronics and Adv. Mat. 10, 2373 (2008).
64. W. M. Zhu and Z. G. Ye, Ceram. International. 30, 1435 (2004).

Data & Media loading...


Article metrics loading...



Nanoparticles of BiFeO (BFO) are incorporated in the nanocomposite of (BiFeO) (CoZnCu FeO), (BFO-CZCF) and these are prepared by chemical route. The formation of pure crystallographic phase of each component (BFO and CZCF) in the nanocomposite of BFO-CZCF has been confirmed by Rietveld analysis of the X-ray diffractograms using FULLPROF program. Morphology, average particle size and its distribution, crystallographic phase etc. are obtained from the high-resolution transmission electron microscopy of BFO-CZCF. Magnetic measurements of BFO-CZCF have been carried out to explore the modulation of magnetic behavior of BFO in BFO-CZCF. Interestingly, magnetization of BFO-CZCF has been drastically enhanced compared to that of the pristine BFO. An exchange bias effect is also observed in the M vs. H loops of BFO-CZCF recorded in field cooled and zero field cooled conditions, which suggest that nanoparticles of BFO (AFM) are encapsulated by nanoparticles of CZCF (FM) in BFO-CZCF. Thermal variation of dielectric constant of BFO-CZCF is recorded in the range of 300 to 1073 K and a ferroelectric to paraelectric transition is observed at ∼728 K. Enhanced magnetic property of BFO would quite interesting for this important multiferroic.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd