1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhancement in the multiferroic properties of BiFeO3 by charge compensated aliovalent substitution of Ba and Nb
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/3/10.1063/1.4869081
1.
1. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
http://dx.doi.org/10.1088/0022-3727/38/8/R01
2.
2. Q. Ke, X. Lou, Y. Wang, and J. Wang, Phys. Rev. B 82, 024102 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.024102
3.
3. H.-J. Feng, J. Appl. Phys. 114, 123916 (2013).
http://dx.doi.org/10.1063/1.4823515
4.
4. H.-J Feng, J. Magn. Magn. Mater. 322, 1765 (2010).
http://dx.doi.org/10.1016/j.jmmm.2009.12.025
5.
5. R. Haumont, I. A. Kornev, S. Lisenkov, L. Bellaiche, J. Kreisel, and B. Dkhil, Phys. Rev. B 78, 134108 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134108
6.
6. H.-J. Feng, Europhys. Lett. 101, 67007 (2013).
http://dx.doi.org/10.1209/0295-5075/101/67007
7.
7. I. A. Kornev, S. Lisenkov, R. Haumont, B. Dkhil, and L. Bellaiche, Phys. Rev. Lett. 99, 227602 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.227602
8.
8. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
http://dx.doi.org/10.1021/jp000114x
9.
9. X. H. Xiao, J. Zhu, Y. R. Li, W. B. Luo, B. F. Yu, L. X. Fan, F. Ren, C. Liu, and C. Z. Jiang, J. Phys. D: Appl. Phys. 40, 5775 (2007).
http://dx.doi.org/10.1088/0022-3727/40/18/039
10.
10. H. Yang, Y. Q. Wang, H. Wang, and Q. X. Jia, Appl. Phys. Lett. 96, 012909 (2010).
http://dx.doi.org/10.1063/1.3291044
11.
11. S. K. Singh, K. Maruyama, and H. Ishiwara, Appl. Phys. Lett. 91, 112913 (2007).
http://dx.doi.org/10.1063/1.2784968
12.
12. T. Kawae, H. Tsuda, and A. Morimoto, Appl. Phys. Express 1, 051601 (2008).
http://dx.doi.org/10.1143/APEX.1.051601
13.
13. Y. K. Jun, W. T. Moon, C. M. Chang, H. S. Kim, H. S. Ryu, J. W. Kim, K. H. Kim, and S. H. Hong, Solid State Commun. 135, 133 (2005).
http://dx.doi.org/10.1016/j.ssc.2005.03.038
14.
14. A. R. Makhdoom, M. J. Akhtar, M. A. Rafiq, and M. M. Hassan, Ceram. Int. 38, 3829 (2012).
http://dx.doi.org/10.1016/j.ceramint.2012.01.032
15.
15. R. Rai, I. Bdikin, M. A. Valente, and A. L. Kholkin, Mater. Chem. Phys. 119, 539 (2010).
http://dx.doi.org/10.1016/j.matchemphys.2009.10.011
16.
16. L. H. Yin, Y. P. Sun, F. H. Zhang, W. B. Wu, X. Luo, X. B. Zhu, Z. R. Yang, J. M. Dai, W. H. Song, and R. L. Zhang, J. Alloys Compd. 488, 254 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.08.099
17.
17. F. Z. Qian, J. S. Jiang, D. M. Jiang, C. M. Wang, and W. G. Zhang, J. Magn. Magn. Mater. 322, 3127 (2010).
http://dx.doi.org/10.1016/j.jmmm.2010.05.045
18.
18. H. Zhongqiang, L. Meiya, Y. Benfang, P. Ling, L. Jun, W. Jing, and Z. Xingzhong, J. Phys. D: Appl. Phys. 42, 185010 (2009).
http://dx.doi.org/10.1088/0022-3727/42/18/185010
19.
19. X. Zheng, Q. Xu, Z. Wen, X. Lang, D. Wu, T. Qiu, and M. X. Xu, J. Alloys Compd. 499, 108 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.03.131
20.
20. V. A. Khomchenko, M. Kopcewicz, A. M. L. Lopes, Y. G. Pogorelov, J. P. Araujo, J. M. Vieira, and A. L. Kholkin, J. Phys. D: Appl. Phys. 41, 102003 (2008).
http://dx.doi.org/10.1088/0022-3727/41/10/102003
21.
21. P. Li, Y.-H. Lin, and C.-W. Nan, J. Appl. Phys. 110, 033922 (2011).
http://dx.doi.org/10.1063/1.3622564
22.
22. Y.-K. Jun and S.-H. Hong, Solid State Commun. 144, 329 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.08.029
23.
23. A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory: Los Alamos, NM, 86, 748 (2004).
24.
24. D. Cai, J. Li, T. Tong, D. Jin, S. Yu, and J. Cheng, Mater. Chem. Phys. 134, 139 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2012.02.042
25.
25. Q. Zhang, W. Gong, J. Wang, X. Ning, Z. Wang, X. Zhao, W. Ren, and Z. Zhang, J. Phys. Chem. C 115, 25241 (2011).
http://dx.doi.org/10.1021/jp208750n
26.
26. A. R. Makhdoom, M. J. Akhtar, R. T. A. Khan, M. A. Rafiq, M. M. Hasan, F. Sher, and A. N. Fitch, Mater. Chem. Phys., 1 (2013).
27.
27. A. M. Glazer, Acta Crystallogr. Sect. A 31, 756 (1975).
http://dx.doi.org/10.1107/S0567739475001635
28.
28. A. Glazer, Acta Crystallographica Section B 28, 3384 (1972).
http://dx.doi.org/10.1107/S0567740872007976
29.
29. R. D. Shannon, Acta Crystallography A32, 751 (1976).
http://dx.doi.org/10.1107/S0567739476001551
30.
30. K. S. Nalwa and A. Garg, J. Appl. Phys. 103, 044101 (2008).
http://dx.doi.org/10.1063/1.2838483
31.
31. M. Ncube, D. Naidoo, K. Bharuth-Ram, D. Billing, H. Masenda, D. R. Sahu, B. K. Roul, and R. M. Erasmus, Hyperfine Interact. 219, 83 (2013).
http://dx.doi.org/10.1007/s10751-012-0729-x
32.
32. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, Phys. Rev. B 76, 024116 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.024116
33.
33. N. N. Greenwood and T. C. Gibb, Mossbauer Spectroscopy (Chapman and Hall, London, 1971).
34.
34. J. Liu, M. Li, L. Pei, B. Yu, D. Guo, and X. Zhao, J. Phys. D: Appl. Phys. 42, 115409 (2009).
http://dx.doi.org/10.1088/0022-3727/42/11/115409
35.
35. J. Wu, J. Wang, D. Xiao, and J. Zhu, AIP Adv. 1, 022138 (2011).
http://dx.doi.org/10.1063/1.3601362
36.
36. Y. Wang and J. Wang, J. Phys. D: Appl. Phys. 42, 162001 (2009).
http://dx.doi.org/10.1088/0022-3727/42/16/162001
37.
37. Z. Quan, W. Liu, H. Hu, S. Xu, B. Sebo, G. Fang, M. Li, and X. Zhao, J. Appl. Phys. 104, 084106 (2008).
http://dx.doi.org/10.1063/1.3000478
38.
38. P. Uniyal and K. L. Yadav, Mater. Lett. 62, 2858 (2008).
http://dx.doi.org/10.1016/j.matlet.2008.01.103
39.
39. L. Meiya, N. Min, M. Yungui, W. Qibin, and C. K. Ong, J. Phys. D: Appl. Phys. 40, 1603 (2007).
http://dx.doi.org/10.1088/0022-3727/40/6/002
40.
40. J.-H. Xu, H. Ke, D.-C. Jia, W. Wang, and Y. Zhou, Philos. Mag. Lett. 89, 701 (2009).
http://dx.doi.org/10.1080/09500830903267066
41.
41. P. Singh and J. H. Jung, Physica B 405, 1086 (2010).
http://dx.doi.org/10.1016/j.physb.2009.11.007
42.
42. P. Singh, K. D. Sung, Y. A. Park, N. Hur, and J. H. Jung, J. Korean Phys. Soc. 55, 609 (2009).
http://dx.doi.org/10.3938/jkps.55.609
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869081
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869081
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869081
2014-03-18
2014-09-15

Abstract

Polycrystalline ceramics, BiBaFe Nb O (x = 0.00–0.15), were synthesized by solid state reactions method. X-ray diffraction data have revealed elimination of impurity phases and an increase in unit cell volume with Ba and Nb substitution. Diffraction peak splitting is found to be suppressed which indicates a decrease in octahedral distortion. The Mössbauer spectra demonstrate the suppression of spiral spin modulation of the magnetic moments resulting in enhanced ferromagnetism with increasing dopant concentration. The leakage current density of the sample with x = 0.10 is found to be greatly reduced up to six orders of magnitude as compared to the undoped sample. Ohmic conduction is found to be dominant mechanism in all the samples, however, undoped sample showed space charge limited conduction in high electric filed region, while the sample with x = 0.15 exhibited grain boundary limited conduction in low electric field region.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869081.html;jsessionid=8kuf67tc2ekd9.x-aip-live-02?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869081&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancement in the multiferroic properties of BiFeO3 by charge compensated aliovalent substitution of Ba and Nb
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869081
10.1063/1.4869081
SEARCH_EXPAND_ITEM