Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/3/10.1063/1.4869093
1.
1. W. A. Yee, M. Kotaki, Y. Liu, and X. Lu, Polymer 48, 512 (2007).
http://dx.doi.org/10.1016/j.polymer.2006.11.036
2.
2. M. Wang, J. H. Shi, K. P. Pramoda, and S. H. Goh, Nanotechnology 18(23), 235701 (2007).
http://dx.doi.org/10.1088/0957-4484/18/23/235701
3.
3. F. He, J. Fan, and S. Lau, Polym. Test. 27(8), 964 (2008).
http://dx.doi.org/10.1016/j.polymertesting.2008.08.010
4.
4. J. Kulek, I. Szafraniak, B. Hilczer, and M. Polomska, J. Non-Cryst. Solids 353, 4448 (2007).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.02.077
5.
5. T. Furukawa and G. E. Johnson, Appl. Phys. Lett. 38, 1027 (1981).
http://dx.doi.org/10.1063/1.92232
6.
6. M. Takahashi, Y. Hara, K. Aoshima, H. Kurihara, T. Oshikawa, and M. Yamashita, Tetrahedron, Lett. 41, 8485 (2000).
http://dx.doi.org/10.1016/S0040-4039(00)01488-X
7.
7. M. C. Silva, A. S. S. de Camargo, L. A. O. Nunes, R. A. Silva, and A. Marletta, J. Non-Cryst. Solids 354, 5496 (2008).
http://dx.doi.org/10.1016/j.jnoncrysol.2008.07.032
8.
8. L. O. Faria and R. L. Moreira, J. Polym. Sci. Part B: Polym. Phys. 37, 2996 (1999).
http://dx.doi.org/10.1002/(SICI)1099-0488(19991101)37:21<2996::AID-POLB9>3.0.CO;2-7
9.
9. S. M. Lebedev, O. S. Gefle, and N. T. Tkachenko, J. Electrost. 68, 122 (2010).
http://dx.doi.org/10.1016/j.elstat.2009.11.007
10.
10. T. Tanaka, IEEE Trans. Dielect. Electr. Insul. 12, 914 (2005).
http://dx.doi.org/10.1109/TDEI.2005.1522186
11.
11. T. J. Lewis, IEEE Trans. Dielect. Electr. Insul. 1, 812 (1994).
http://dx.doi.org/10.1109/94.326653
12.
12. D. K. Das-Gupta and K. Doughty, Thin Solid Films 158, 93 (1988).
http://dx.doi.org/10.1016/0040-6090(88)90306-9
13.
13. H. L. W. Chan, Q. Q. Zhang, W. Y. Ng, and C. L. Choy, IEEE Trans. Dielect. Electr. Insul. 7, 204 (2000).
http://dx.doi.org/10.1109/94.841810
14.
14. F. Xie and Z. Zheng, Physica B 349, 415 (2004).
http://dx.doi.org/10.1016/j.physb.2004.04.070
15.
15. H. Suzuki, Y. Hattori, T. Lizuka, K. Yuzawa, and N. Matsumoto, Thin Solid Films 438, 288 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00732-6
16.
16. H. Huang and B. Yan, Mater. Sci. Eng. B 117, 261 (2005).
http://dx.doi.org/10.1016/j.mseb.2004.11.023
17.
17. G. A. Kumar, Mater. Lett. 55, 364 (2002).
http://dx.doi.org/10.1016/S0167-577X(02)00394-4
18.
18. A. Hassen, T. Hanafy, S. El-Sayed, and A. Himanshu, J. Appl. Phys. 110, 114119 (2011).
http://dx.doi.org/10.1063/1.3669396
19.
19. A. Kyritsis, P. Pissi, and I. Grammatikakis, J. Polym. Sci. Part B: Polym. Phys. 33, 1737 (1995).
http://dx.doi.org/10.1002/polb.1995.090331205
20.
20. T. A. Hanafy, J. Appl. Phys. 112(3), 034102 (2012).
http://dx.doi.org/10.1063/1.4739752
21.
21. A. Bello, E. Laredo, and M. Grimau, Phys Rev B 60, 12764 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.12764
22.
22. G. A. Samara, and F. Baur, Ferroelectrics 135(1), 385 (1992).
http://dx.doi.org/10.1080/00150199208230040
23.
23. M. Schenk, S. Dauer, T. Lessle, and B. Ploss, Ferroelectrics 127, 215 (1992).
http://dx.doi.org/10.1080/00150199208223373
24.
24. T. A. Hanafy, J. Appl. Polym. Sci. 108, 2540 (2008).
http://dx.doi.org/10.1002/app.27567
25.
25. R. Richert, J. Non-Cryst. Solids 305(1–3), 29 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)01085-2
26.
26. F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003).
27.
27. H. Lu, X. Zhang, and H. Zhang, J. Appl. Phys. 100(5), 054104 (2006).
http://dx.doi.org/10.1063/1.2336494
28.
28. M. F. Mostafa and A. Hassen, Phase Transitions 79, 305 (2006).
http://dx.doi.org/10.1080/01411590600670237
29.
29. A. C. Lopes, C. M. Costa, R. Sabater i Serra, I. C. Neves, J. L. Gomez Ribelles, and S. Lanceros-Méndez, Solid State Ionics 235, 42 (2013).
http://dx.doi.org/10.1016/j.ssi.2013.01.013
30.
30. G. M. Tsangaris, N. Kouloumbi, and S. Kyvelidis, Mater. Chem. Phys. 44, 245 (1996).
http://dx.doi.org/10.1016/0254-0584(96)80063-0
31.
31. X. Xu, H. Ming, and Q. Zhang, Opt. Commun. 199, 369 (2001).
http://dx.doi.org/10.1016/S0030-4018(01)01587-5
32.
32. S. Moynihan, R. Van Deun, K. Binnemons, and G. Redmond, Opt. Mat. 29, 1821 (2007).
http://dx.doi.org/10.1016/j.optmat.2006.10.005
33.
33. G. C. Psarras, E. Manolakaki, and G. M. Tsangaris, Compos. Part A: Appl. Sci. Manufact. 34, 1187 (2003).
http://dx.doi.org/10.1016/j.compositesa.2003.08.002
34.
34. C. V. Chanmal and J. P. Jog, eXPRESS Polym. Lett. 2(4), 294 (2008).
http://dx.doi.org/10.3144/expresspolymlett.2008.35
35.
35. E. Tuncer, M. Wegener, and R. Gerhard-Multhaupt, J. Non-Cryst. Solids 351, 2917 (2005).
http://dx.doi.org/10.1016/j.jnoncrysol.2005.03.055
36.
36. J. C. Dyre and T. B. Schroder, Rev. Mod. Phys. 72, 873 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.873
37.
37. A. K. Jonscher, Nature 267, 673 (1977).
http://dx.doi.org/10.1038/267673a0
38.
38. W. Rehwald, H. Kiess, and B. Binggeli, Z. Phys. B 68, 143 (1987).
http://dx.doi.org/10.1007/BF01304219
39.
39. K. L. Ngai and S. W. Martin, Phys. Rev. B 40, 10550 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.10550
40.
40. P. K. Dixon, Phys. Rev. B 42, 8179 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.8179
41.
41. R. Singh, J. Kumar, R. K. Singh, A. Kaur, R. D. P. Sinha, and N. P. Gupta, Polymer 47, 5919 (2006).
http://dx.doi.org/10.1016/j.polymer.2006.06.023
42.
42. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, London, 1979).
43.
43. A. K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983), p. 340.
44.
44. G. E. Pike, Phys Rev B 6, 1572 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.1572
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869093
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869093
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869093
2014-03-18
2016-12-04

Abstract

The dielectric permittivity (′), electric modulus (″), and ac conductivity ( ) of pure polyvinylidene fluoride (PVDF) and PVDF containing 3 wt.% Cl ( = Er or Gd) were measured. The incorporation of 3 wt.% of ErCl or GdCl within the PVDF matrix is found significantly to increase its ′ and . All investigated samples show different relaxation processes within the studied temperature and frequency ranges. The first process is -relaxation, which occurs around the glass transition temperature, . The second process is -relaxation, which is associated with the molecular motions in the crystalline region of the main polymer chain. Third is the ρ-relaxation which observed for pure PVDF at low temperatures and high frequencies. The frequency dependence of shows that the conduction mechanism for pure PVDF and PVDF containing 3 wt.% of Cl is correlated barrier hopping (CBH). The binding energy of the carriers was calculated based on the CBH model. Finally, the results obtained in this work are discussed and compared with those for 3 wt.% LaCl-doped PVDF and similar materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869093.html;jsessionid=ugiM2hqXYbNxoQiSs4RaQfOZ.x-aip-live-03?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869093&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/3/10.1063/1.4869093&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/3/10.1063/1.4869093'
Right1,Right2,Right3,