1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Fabrication of silicon nanotip arrays with high aspect ratio by cesium chloride self-assembly and dry etching
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/3/10.1063/1.4869238
1.
1. I. W. Rangelow and S. Biehl, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 19, 916 (2001).
http://dx.doi.org/10.1116/1.1371018
2.
2. Y. Tao, R. J. Fasching, and F. B. Prinz, Smart Structures and Materials 431 (2004).
3.
3. B. Gesemann et al., IEEE Transactions on Nanotechnology 10, 50 (2011).
http://dx.doi.org/10.1109/TNANO.2010.2053046
4.
4. I. Obataya et al., Nano Lett. 5, 27 (2005).
http://dx.doi.org/10.1021/nl0485399
5.
5. A. Goryu et al., IEEE 23rd International Conference 280 (2010).
6.
6. A. Hochbaum, R. Fan, R. He, and P.-D. Yang, Nano Lett 5, 457 (2005).
http://dx.doi.org/10.1021/nl047990x
7.
7. Z.-P. Huang, X.-X. Zhang, M. Reiche, L-F Liu, W. Lee, and T. Shimizu, Nano Lett 8, 3046 (2008).
http://dx.doi.org/10.1021/nl802324y
8.
8. Y-X Liao and F-T Yi, Nanotechnology 21, 465302 (2010).
http://dx.doi.org/10.1088/0957-4484/21/46/465302
9.
9. Z. P. Huang et al., Nano Lett 9, 2519 (2009).
http://dx.doi.org/10.1021/nl803558n
10.
10. J. X. He, Y. Cui et al., Mater Lett 64, 463 (2010).
http://dx.doi.org/10.1016/j.matlet.2009.11.048
11.
11. V. Canpean, S. Astilean et al., Mater Lett 63, 1834 (2009).
http://dx.doi.org/10.1016/j.matlet.2009.05.048
12.
12. M. Q. Li and C. K. Ober, Mater Today 9, 9 (2006).
13.
13. M. Green and S. Tsuchiya, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, 2074 (1999).
http://dx.doi.org/10.1116/1.590875
14.
14. C. D. W. Wilkinson and M. Rahman, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362, 125 (2004).
http://dx.doi.org/10.1098/rsta.2003.1307
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869238
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869238
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869238
2014-03-19
2014-07-30

Abstract

Nanotip arrays with high aspect ratio, which have attracted much attention due to their potential applications, have been fabricated by many methods. Dry etching combined with self-assembly masks is widely used because of the convenience of dry etching and high throughput of self-assembly. In this paper, we report a method combining Cesium Chloride (CsCl) self-assembly with inductively coupled plasma (ICP) dry etching to fabricate silicon nanotip arrays with high aspect ratio and silicon nanotip arrays with aspect ratio 15 have been achieved after optimization of all parameters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869238.html;jsessionid=3le0cd1rhmeob.x-aip-live-03?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869238&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Fabrication of silicon nanotip arrays with high aspect ratio by cesium chloride self-assembly and dry etching
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869238
10.1063/1.4869238
SEARCH_EXPAND_ITEM