Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. S. Smalø, Ø. Hestad, S. Ingebrigtsen, and P.-O. Åstrand, “Field dependence on the molecular ionization potential and excitation energies compared to conductivity models for insulation materials at high electrical fields,” J. Appl. Phys. 109, 073306 (2011).
2. N. Davari, P.-O. Åstrand, S. Ingebrigtsen, and M. Unge, “Excitation energies and ionization potentials at high electric fields for molecules relevant for electrically insulating liquids,” J. Appl. Phys. 113, 143707 (2013).
3. J. Jadidian, M. Zahn, N. Lavesson, O. Widlund, and K. Borg, “Effect of impulse voltage polarity, peak amplitude, and rise time on streamers initiated from a needle electrode in transformer oil,” IEEE Trans. Plasma Sci. 40, 909 (2012).
4. J. Jadidian, M. Zahn, N. Lavesson, O. Widlund, and K. Borg, “Stochastic and deterministic causes of streamer branching in liquid dielectrics,” J. Appl. Phys. 114, 063301 (2013).
5. J. Jadidian and M. Zahn, “Charge transport analysis in two-phase composite dielectric systems,” IEEE Trans. Plasma Sci. 41, 2464 (2013).
6. Y. Nakao, H. Itoh, S. Hoshino, Y. Sakai, and T. Hagashira, “Effects of additives on prebreakdown phenomena in n-hexane,” IEEE Trans. Dielect. Elect. Insul. 1, 383 (1994).
7. L. Angerer, “Effect of organic additives on electrical breakdown in transformer oil and liquid paraffin,” Proc. IEE 112, 1025 (1965).
8. N. V. Dung, H. K. Høidalen, D. Linhjell, L. E. Lundgaard, and M. Unge, “Influence of impurities and additives on positive streamers in paraffinic model oil,” IEEE Trans. Dielect. Elect. Insul. 19, 1593 (2012).
9. S. Ingebrigtsen, H. S. Smalø, P.-O. Åstrand, and L. E. Lundgaard, “Effects of electron-attaching and electron-releasing additives on streamers in liquid cyclohexane,” IEEE Trans. Dielect. Elect. Insul. 16, 1524 (2009).
10. O. Lesaint and M. Jung, “On the relationship between streamer branching and propagation in liquids: influence of pyrene in cyclohexane,” J. Phys. D: Appl. Phys. 33, 1360 (2000).
11. A. Beroual and R. Tobazeon, “Prebreakdown phenomena in liquid dielectrics,” IEEE Trans. Dielect. Elect. Insul. 21, 613 (1986).
12. W. G. Chadband and T. Sufian, “Experimental support for a model of positive streamer propagation in liquid insulation,” IEEE Trans. Elect. Insul. 20, 239 (1985).
13. J. C. Devins, S. J. Rzad, and R. J. Schwabe, “Breakdown and prebreakdown phenomena in liquids,” J. Appl. Phys. 52, 4531 (1981).
14. N. V. Dung, H. K. Høidalen, D. Linhjell, L. E. Lundgaard, and M. Unge, “Effects of reduced pressure and additives on streamers in white oil in long point-plane gap,” J. Phys. D: Appl. Phys. 46, 255501 (2013).
15. M. Unge, S. Singha, N. V. Dung, D. Linhjell, S. Ingebrigtsen, and L. E. Lundgaard, “Enhancements in the lightning impulse breakdown characteristics of natural ester dielectric liquids,” Appl. Phys. Lett. 102, 172905 (2013).
16. K. Burke, “Perspective on density functional theory,” J. Chem. Phys. 136, 150901 (2012).
17. N. Davari, P.-O. Åstrand, and T. Van Voorhis, “Field-dependent ionisation potential by constrained density functional theory,” Mol. Phys. 111, 1456 (2013).
18. Q. Wu and T. Van Voorhis, “Direct optimization method to study constrained systems within density-functional theory,” Phys. Rev. A 72, 024502 (2005).
19. B. Kaduk, T. Kowalczyk, and T. Van Voorhis, “Constrained density functional theory,” Chem. Rev. 112, 321 (2012).
20. Q. Wu and T. Van Voorhis, “Constrained density functional theory and its application in long-range electron transfer,” J. Chem. Theory Comput. 2, 765 (2006).
21. T. Kowalczyk, Z. Lin, and T. Van Voorhis, “Fluorescence quenching by photoinduced electron transfer in the Zn2 + sensor Zinpyr-1: A computational investigation,” J. Phys. Chem. A 114, 10427 (2010).
22. I. Rudra, Q. Wu, and T. Van Voorhis, “Predicting exchange coupling constants in frustrated molecular magnets using density functional theory,” Inorg. Chem. 46, 10539 (2007).
23. Q. Wu, B. Kaduk, and T. Van Voorhis, “Constrained density functional theory based configuration interaction improves the prediction of reaction barrier heights,” J. Chem. Phys. 130, 034109 (2009).
24. H. Oberhofer and J. Blumberger, “Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions,” J. Chem. Phys. 131, 064101 (2009).
25. Y. Lu, R. Quardokus, C. S. Lent, F. Justaud, C. Lapinte, and S. A. Kande, “Charge localization in isolated mixed-valence complexes: An STM and theoretical study,” J. Am. Chem. Soc. 132, 13519 (2010).
26. T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng, and Q. Wu, “The diabatic picture of electron transfer, reaction barriers, and molecular dynamics,” Ann. Rev. Phys. Chem. 61, 149 (2010).
27. M. Nishimatsu, T. Miyamoto, and T. Suzuki, Liquid Insulation (Wiley Encyclopedia of Electrical and Electronics Engineering, 1999) John Wiley & Sons.
28. N. Berger, M. Randoux, G. Ottmann, and P. Vuarchex, “Review on insulating liquids,” Electra 171, 33 (1997).
29. L. Rongsheng, C. Törnkvist, V. Chandramouli, O. Girlanda, and L. A. A. Pettersson, “Ester fluids as alternative for mineral oil: The difference in streamer velocity and LI breakdown voltage,” in IEEE. Conf. Elect. Insul. Dielect. Phenomena (2009) pp. 543548.
30. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys. 98, 5648 (1993).
31. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B 37, 785 (1988).
32. T. H. Dunning, Jr., “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys. 90, 1007 (1989).
33. P.-O. Löwdin, “On the nonorthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals,” J. Chem. Phys. 18, 365 (1950).
34. G. Zhang and C. B. Musgrave, “Comparison of DFT methods for molecular orbital eigenvalue calculations,” J. Phys. Chem. A 111, 1554 (2007).
35. R. A. Kendall, T. H. Dunning, and R. J. Harrison, “Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions,” J. Chem. Phys. 96, 6796 (1992).
36. M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, “NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations,” Comput. Phys. Commun. 181, 1477 (2010).
37. D. R. Lide, Handbook of Chemistry and Physics, 84th ed. (FL: CRC Press, Boca Raton, 2004).
38. M. S. Deleuze, L. Claes, E. S. Kryachko, and J.-P. François, “Benchmark theoretical study of the ionization threshold of benzene and oligoacenes,” J. Chem. Phys. 119, 3106 (2003).
39. F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, “Development and assessment of new exchange-correlation functionals,” J. Chem. Phys. 109, 6264 (1998).
40. N. C. Handy and D. J. Tozer, “Excitation energies of benzene from Kohn-Sham theory,” J. Comput. Chem. 20, 106 (1999).<106::AID-JCC11>3.0.CO;2-P
41. A. Denat, J. P. Gosse, and B. Gosse, “Electrical conduction of purified cyclohexane in a divergent electric field,” IEEE Trans. Elect. Insul. 23, 545 (1988).
42. S. Ingebrigtsen, L. E. Lundgaard, and P.-O. Åstrand, “Effects of additives on prebreakdown phenomena in liquid cyclohexane: II. streamer propagation,” J. Phys. D: Appl. Phys. 40, 5624 (2007).
43. S. Ingebrigtsen, L. E. Lundgaard, and P.-O. Åstrand, “Effects of additives on prebreakdown phenomena in liquid cyclohexane: I. streamer initiation,” J. Phys. D: Appl. Phys. 40, 5161 (2007).
44. Ø. Hestad, H. S. Smalø, P.-O. Åstrand, S. Ingebrigtsen, and L. E. Lundgaard, “Effects of N,N-dimethylaniline and trichloroethene on prebreakdown phenomena in liquid and solid n-tridecane,” IEEE Trans. Dielect. Elect. Insul. 18, 1886 (2011).
45. Ø. L. Hestad, P.-O. Åstrand, and L. E. Lundgaard, “n-tridecane as a model system for polyethylene: Comparison of pre-breakdown phenomena in liquid and solid phase stressed by fast transient,” IEEE Trans. Dielect. Elect. Insul. 18, 1929 (2011).
46. Z. Zhou, L. Zhang, M. Xie, Z. Wang, D. Chen, and F. Qi, “Determination of absolute photoionization cross-sections of alkanes and cyclo-alkanes,” Rapid Commun. Mass Spectrom. 24, 1335 (2010).
47. L. W. Pickett, M. Muntz, and E. M. McPherson, “Vacuum ultraviolet absorption spectra of cyclic compounds. I. cyclohexane, cyclohexene, cyclopentane, cyclopentene and benzene,” J. Am. Chem. Soc. 73, 4862 (1951).
48. N. Bonifaci and A. Denat, “Spectral analysis of light emitted by prebreakdown phenomena in non-polar liquids and gases,” IEEE Trans. Elect. Insul. 26, 610 (1991).
49. S. Ingebrigtsen, N. Bonifaci, A. Denat, and O. Lesaint, “Spectral analysis of the light emitted from streamers in chlorinated alkane and alkene liquids,” J. Phys. D: Appl. Phys. 41, 235204 (2008).
50. D. Linhjell, S. Ingebrigtsen, L. E. Lundgaard, and M. Unge, “Streamers in long point-plane gaps in cyclohexane with and without additives under step voltage,” in IEEE International Conference on Dielectric Liquids (ICDL) (Trondheim, Norway, 2011).
51. T. V. Oomen, “Vegetable oils for liquid-filled transformers,” IEEE Electric. Insul. Mag. 18, 6 (2002).
52. J. P. Gosse, “Electric conduction in dielectric liquids,” NATO ASI Series 193, 503 (1989).
53. R. Chen, F. Wu, L. Li, Y. Guan, X. Qiu, S. Chen, Y. Li, and S. Wu, “Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries,” 172, 395 (2007).
54. Y. Yokoyama and M. Jinno, “Identification of accidentally degenerate bands in UV and propylene photoelectron spectra carbonate,” J. Electron Spectrosc. Rel. Phen. 5, 1095 (1974).
55. S. C. Bera, R. Mukherjee, and M. Chowdhury, “Spectra of benzil,” J. Chem. Phys. 51, 754 (1969).
56. J. Arnett and S. P. McGlynn, “Photorotamerism of aromatic .alpha.-dicarbonyls,” J. Phys. Chem. 79, 626 (1975).
57. S. Lopes, A. Gómez-Zavaglia, L. Lapinski, N. Chattopadhyay, and R. Fausto, “Matrix-isolation FTIR spectroscopy of benzil: Probing the flexibility of the C-C torsional coordinate,” J. Phys. Chem. A 108, 8256 (2004).
58. A. Singh, D. K. Palit, and J. P. Mittal, “Conformational relaxation dynamics in the excited electronic states of benzil in solution,” Chem. Phys. Lett. 360, 443 (2002).
59. M. Jarvid, A. Johansson, V. Englund, S. Gubanski, and M. R. Andersson, “Electrical tree inhibition by voltage stabilizers,” in IEEE Conference on Electrical Insulation and Dielectric Phenomena, (CEIDP) (Montreal, Canada, 2012) pp. 605608.
60. T. M. Kolev and B. A. Stamboliyska, “Vibrational spectra and structure of benzil and its 18O and d10-labelled derivatives: a quantum chemical and experimental study,” Spectrochim. Acta A 58, 3127 (2002).
61. C. Brown and R. Sadanaga, “The crystal structure of benzil,” Acta Cryst. 18, 158 (1965).
62. Q. Shen and K. Hagen, “Gas-phase molecular structure and conformation of benzil as determined by electron diffraction,” J. Phys. Chem. 91, 1357 (1987).
63. A. V. Polevoi, V. M. Matyuk, G. A. Grigoréva, and V. K. Potapov, “Formation of intermediate products during the resonance stepwise polarization of dibenzyl ketone and benzil molecules,” 21, 12 (1987).
64. W. G. Herkstroeter, A. A. Lamola, and G. S. Hammond, “Mechanisms of photochemical reactions in solution. XXVIII.1 Values of triplet excitation energies of selected sensitizers,” J. Am. Chem. Soc. 86, 4537 (1964).
65. D. J. Morantz and A. J. C. Wright, “Structures of the excited states of benzil and related dicarbonyl molecules,” J. Chem. Phys. 54, 692 (1971).
66. A. Chakrabarty, P. Purkayastha, and N. Chattopadhyay, “Laser induced optacoustic spectroscopy of benzil: Evaluation of structural volume change upon photoisomerization,” J. Photochem. Photobiol. A: Chem. 198, 256 (2008).
67. K. K. Das and D. Majumdar, “Ground and excited states of benzil: A theoretical study,” J. Mol. Struct. (THEOCHEM) 288, 55 (1993).
68. K. Venkataraman, ed., The Chemistry of Synthetic Dyes (Academic press, New York, 1971).
69. M. Matsuoka, Infrared Absorbing Dyes (Plenum Press, New York, USA, 1990).
70. V. Khodorkovsky and J. Y. Becker, In Organic Conductors: Fundamentals and Applications. (Matcel Dekker, New York, 1994).
71. H. P. Trommsdorff, “Electronic states and spectra of p-benzoquinone,” J. Chem. Phys. 56, 5358 (1972).
72. L. Åsbrink, G. Bieri, C. Fridh, E. Lindholm, and D. P. Chong, “Spectra of p-benzoquinone, studied with HAM/3,” Chem. Phys. 43, 189 (1979).
73. H. Yasushi, H. Masahiko, E. Masahiro, and N. Hiroshi, “Excited and ionized states of p-benzoquinone and its anion radical: SAC-CI theoretical study,” J. Phys. Chem. A 106, 3838 (2002).
74. P. Jacques, J. Faure, O. Chalvet, and H. H. Jaffe, “A reexamination of the oxygen parameters in the CNDO/S method. Application to UV and photoelectron spectra of p-benzoquinone,” J. Phys. Chem. 85, 473 (1981).
75. A. Kuboyama, Y. Kozima, and J. Maeda, “The CNDO/S-CI calculations of the singlet nπ* and ππ* levels of quinones,” Bull. Chem. Soc (Jpn) 55, 3635 (1982).
76. A. A. Meier and G. H. Wagniére, “The long-wavelength MCD of some quinones and its interpretation by semi-empirical MO methods,” Chem. Phys. 113, 287 (1987).
77. S. Coriani, P. Jørgensen, A. Rizzo, K. Ruud, and J. Olsen, “Ab initio determinations of magnetic circular dichroism,” Chem. Phys. Lett. 300, 61 (1999).
78. R. Broer and W. Nieuwpoort, “Hole localization and symmetry breaking,” J. Mol. Struct. (THEOCHEM) 458, 19 (1999).
79. J. Weber, K. Malsch, and G. Hohlneicher, “Excited electronic states of p-benzoquinone,” Chem. Phys. 264, 275 (2001).

Data & Media loading...


Article metrics loading...



The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type → π* (lone pair to unoccupied π* orbital) has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example -tridecane and cyclohexane) on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd