1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/3/10.1063/1.4869311
1.
1. H. S. Smalø, Ø. Hestad, S. Ingebrigtsen, and P.-O. Åstrand, “Field dependence on the molecular ionization potential and excitation energies compared to conductivity models for insulation materials at high electrical fields,” J. Appl. Phys. 109, 073306 (2011).
http://dx.doi.org/10.1063/1.3562139
2.
2. N. Davari, P.-O. Åstrand, S. Ingebrigtsen, and M. Unge, “Excitation energies and ionization potentials at high electric fields for molecules relevant for electrically insulating liquids,” J. Appl. Phys. 113, 143707 (2013).
http://dx.doi.org/10.1063/1.4800118
3.
3. J. Jadidian, M. Zahn, N. Lavesson, O. Widlund, and K. Borg, “Effect of impulse voltage polarity, peak amplitude, and rise time on streamers initiated from a needle electrode in transformer oil,” IEEE Trans. Plasma Sci. 40, 909 (2012).
http://dx.doi.org/10.1109/TPS.2011.2181961
4.
4. J. Jadidian, M. Zahn, N. Lavesson, O. Widlund, and K. Borg, “Stochastic and deterministic causes of streamer branching in liquid dielectrics,” J. Appl. Phys. 114, 063301 (2013).
http://dx.doi.org/10.1063/1.4816091
5.
5. J. Jadidian and M. Zahn, “Charge transport analysis in two-phase composite dielectric systems,” IEEE Trans. Plasma Sci. 41, 2464 (2013).
http://dx.doi.org/10.1109/TPS.2013.2276420
6.
6. Y. Nakao, H. Itoh, S. Hoshino, Y. Sakai, and T. Hagashira, “Effects of additives on prebreakdown phenomena in n-hexane,” IEEE Trans. Dielect. Elect. Insul. 1, 383 (1994).
http://dx.doi.org/10.1109/94.300278
7.
7. L. Angerer, “Effect of organic additives on electrical breakdown in transformer oil and liquid paraffin,” Proc. IEE 112, 1025 (1965).
8.
8. N. V. Dung, H. K. Høidalen, D. Linhjell, L. E. Lundgaard, and M. Unge, “Influence of impurities and additives on positive streamers in paraffinic model oil,” IEEE Trans. Dielect. Elect. Insul. 19, 1593 (2012).
http://dx.doi.org/10.1109/TDEI.2012.6311505
9.
9. S. Ingebrigtsen, H. S. Smalø, P.-O. Åstrand, and L. E. Lundgaard, “Effects of electron-attaching and electron-releasing additives on streamers in liquid cyclohexane,” IEEE Trans. Dielect. Elect. Insul. 16, 1524 (2009).
http://dx.doi.org/10.1109/TDEI.2009.5361571
10.
10. O. Lesaint and M. Jung, “On the relationship between streamer branching and propagation in liquids: influence of pyrene in cyclohexane,” J. Phys. D: Appl. Phys. 33, 1360 (2000).
http://dx.doi.org/10.1088/0022-3727/33/11/315
11.
11. A. Beroual and R. Tobazeon, “Prebreakdown phenomena in liquid dielectrics,” IEEE Trans. Dielect. Elect. Insul. 21, 613 (1986).
http://dx.doi.org/10.1109/TEI.1986.348967
12.
12. W. G. Chadband and T. Sufian, “Experimental support for a model of positive streamer propagation in liquid insulation,” IEEE Trans. Elect. Insul. 20, 239 (1985).
http://dx.doi.org/10.1109/TEI.1985.348826
13.
13. J. C. Devins, S. J. Rzad, and R. J. Schwabe, “Breakdown and prebreakdown phenomena in liquids,” J. Appl. Phys. 52, 4531 (1981).
http://dx.doi.org/10.1063/1.329327
14.
14. N. V. Dung, H. K. Høidalen, D. Linhjell, L. E. Lundgaard, and M. Unge, “Effects of reduced pressure and additives on streamers in white oil in long point-plane gap,” J. Phys. D: Appl. Phys. 46, 255501 (2013).
http://dx.doi.org/10.1088/0022-3727/46/25/255501
15.
15. M. Unge, S. Singha, N. V. Dung, D. Linhjell, S. Ingebrigtsen, and L. E. Lundgaard, “Enhancements in the lightning impulse breakdown characteristics of natural ester dielectric liquids,” Appl. Phys. Lett. 102, 172905 (2013).
http://dx.doi.org/10.1063/1.4803710
16.
16. K. Burke, “Perspective on density functional theory,” J. Chem. Phys. 136, 150901 (2012).
http://dx.doi.org/10.1063/1.4704546
17.
17. N. Davari, P.-O. Åstrand, and T. Van Voorhis, “Field-dependent ionisation potential by constrained density functional theory,” Mol. Phys. 111, 1456 (2013).
http://dx.doi.org/10.1080/00268976.2013.800243
18.
18. Q. Wu and T. Van Voorhis, “Direct optimization method to study constrained systems within density-functional theory,” Phys. Rev. A 72, 024502 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.024502
19.
19. B. Kaduk, T. Kowalczyk, and T. Van Voorhis, “Constrained density functional theory,” Chem. Rev. 112, 321 (2012).
http://dx.doi.org/10.1021/cr200148b
20.
20. Q. Wu and T. Van Voorhis, “Constrained density functional theory and its application in long-range electron transfer,” J. Chem. Theory Comput. 2, 765 (2006).
http://dx.doi.org/10.1021/ct0503163
21.
21. T. Kowalczyk, Z. Lin, and T. Van Voorhis, “Fluorescence quenching by photoinduced electron transfer in the Zn2 + sensor Zinpyr-1: A computational investigation,” J. Phys. Chem. A 114, 10427 (2010).
http://dx.doi.org/10.1021/jp103153a
22.
22. I. Rudra, Q. Wu, and T. Van Voorhis, “Predicting exchange coupling constants in frustrated molecular magnets using density functional theory,” Inorg. Chem. 46, 10539 (2007).
http://dx.doi.org/10.1021/ic700871f
23.
23. Q. Wu, B. Kaduk, and T. Van Voorhis, “Constrained density functional theory based configuration interaction improves the prediction of reaction barrier heights,” J. Chem. Phys. 130, 034109 (2009).
http://dx.doi.org/10.1063/1.3059784
24.
24. H. Oberhofer and J. Blumberger, “Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions,” J. Chem. Phys. 131, 064101 (2009).
http://dx.doi.org/10.1063/1.3190169
25.
25. Y. Lu, R. Quardokus, C. S. Lent, F. Justaud, C. Lapinte, and S. A. Kande, “Charge localization in isolated mixed-valence complexes: An STM and theoretical study,” J. Am. Chem. Soc. 132, 13519 (2010).
http://dx.doi.org/10.1021/ja105958p
26.
26. T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng, and Q. Wu, “The diabatic picture of electron transfer, reaction barriers, and molecular dynamics,” Ann. Rev. Phys. Chem. 61, 149 (2010).
http://dx.doi.org/10.1146/annurev.physchem.012809.103324
27.
27. M. Nishimatsu, T. Miyamoto, and T. Suzuki, Liquid Insulation (Wiley Encyclopedia of Electrical and Electronics Engineering, 1999) John Wiley & Sons.
28.
28. N. Berger, M. Randoux, G. Ottmann, and P. Vuarchex, “Review on insulating liquids,” Electra 171, 33 (1997).
29.
29. L. Rongsheng, C. Törnkvist, V. Chandramouli, O. Girlanda, and L. A. A. Pettersson, “Ester fluids as alternative for mineral oil: The difference in streamer velocity and LI breakdown voltage,” in IEEE. Conf. Elect. Insul. Dielect. Phenomena (2009) pp. 543548.
30.
30. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
31.
31. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
32.
32. T. H. Dunning, Jr., “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
33.
33. P.-O. Löwdin, “On the nonorthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals,” J. Chem. Phys. 18, 365 (1950).
http://dx.doi.org/10.1063/1.1747632
34.
34. G. Zhang and C. B. Musgrave, “Comparison of DFT methods for molecular orbital eigenvalue calculations,” J. Phys. Chem. A 111, 1554 (2007).
http://dx.doi.org/10.1021/jp061633o
35.
35. R. A. Kendall, T. H. Dunning, and R. J. Harrison, “Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions,” J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
36.
36. M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, “NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations,” Comput. Phys. Commun. 181, 1477 (2010).
http://dx.doi.org/10.1016/j.cpc.2010.04.018
37.
37. D. R. Lide, Handbook of Chemistry and Physics, 84th ed. (FL: CRC Press, Boca Raton, 2004).
38.
38. M. S. Deleuze, L. Claes, E. S. Kryachko, and J.-P. François, “Benchmark theoretical study of the ionization threshold of benzene and oligoacenes,” J. Chem. Phys. 119, 3106 (2003).
http://dx.doi.org/10.1063/1.1589731
39.
39. F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, “Development and assessment of new exchange-correlation functionals,” J. Chem. Phys. 109, 6264 (1998).
http://dx.doi.org/10.1063/1.477267
40.
40. N. C. Handy and D. J. Tozer, “Excitation energies of benzene from Kohn-Sham theory,” J. Comput. Chem. 20, 106 (1999).
http://dx.doi.org/10.1002/(SICI)1096-987X(19990115)20:1<106::AID-JCC11>3.0.CO;2-P
41.
41. A. Denat, J. P. Gosse, and B. Gosse, “Electrical conduction of purified cyclohexane in a divergent electric field,” IEEE Trans. Elect. Insul. 23, 545 (1988).
http://dx.doi.org/10.1109/14.7324
42.
42. S. Ingebrigtsen, L. E. Lundgaard, and P.-O. Åstrand, “Effects of additives on prebreakdown phenomena in liquid cyclohexane: II. streamer propagation,” J. Phys. D: Appl. Phys. 40, 5624 (2007).
http://dx.doi.org/10.1088/0022-3727/40/18/018
43.
43. S. Ingebrigtsen, L. E. Lundgaard, and P.-O. Åstrand, “Effects of additives on prebreakdown phenomena in liquid cyclohexane: I. streamer initiation,” J. Phys. D: Appl. Phys. 40, 5161 (2007).
http://dx.doi.org/10.1088/0022-3727/40/17/022
44.
44. Ø. Hestad, H. S. Smalø, P.-O. Åstrand, S. Ingebrigtsen, and L. E. Lundgaard, “Effects of N,N-dimethylaniline and trichloroethene on prebreakdown phenomena in liquid and solid n-tridecane,” IEEE Trans. Dielect. Elect. Insul. 18, 1886 (2011).
http://dx.doi.org/10.1109/TDEI.2011.6118627
45.
45. Ø. L. Hestad, P.-O. Åstrand, and L. E. Lundgaard, “n-tridecane as a model system for polyethylene: Comparison of pre-breakdown phenomena in liquid and solid phase stressed by fast transient,” IEEE Trans. Dielect. Elect. Insul. 18, 1929 (2011).
http://dx.doi.org/10.1109/TDEI.2011.6118631
46.
46. Z. Zhou, L. Zhang, M. Xie, Z. Wang, D. Chen, and F. Qi, “Determination of absolute photoionization cross-sections of alkanes and cyclo-alkanes,” Rapid Commun. Mass Spectrom. 24, 1335 (2010).
http://dx.doi.org/10.1002/rcm.4523
47.
47. L. W. Pickett, M. Muntz, and E. M. McPherson, “Vacuum ultraviolet absorption spectra of cyclic compounds. I. cyclohexane, cyclohexene, cyclopentane, cyclopentene and benzene,” J. Am. Chem. Soc. 73, 4862 (1951).
http://dx.doi.org/10.1021/ja01154a116
48.
48. N. Bonifaci and A. Denat, “Spectral analysis of light emitted by prebreakdown phenomena in non-polar liquids and gases,” IEEE Trans. Elect. Insul. 26, 610 (1991).
http://dx.doi.org/10.1109/14.83679
49.
49. S. Ingebrigtsen, N. Bonifaci, A. Denat, and O. Lesaint, “Spectral analysis of the light emitted from streamers in chlorinated alkane and alkene liquids,” J. Phys. D: Appl. Phys. 41, 235204 (2008).
http://dx.doi.org/10.1088/0022-3727/41/23/235204
50.
50. D. Linhjell, S. Ingebrigtsen, L. E. Lundgaard, and M. Unge, “Streamers in long point-plane gaps in cyclohexane with and without additives under step voltage,” in IEEE International Conference on Dielectric Liquids (ICDL) (Trondheim, Norway, 2011).
51.
51. T. V. Oomen, “Vegetable oils for liquid-filled transformers,” IEEE Electric. Insul. Mag. 18, 6 (2002).
http://dx.doi.org/10.1109/57.981322
52.
52. J. P. Gosse, “Electric conduction in dielectric liquids,” NATO ASI Series 193, 503 (1989).
http://dx.doi.org/10.1007/978-1-4684-8023-8
53.
53. R. Chen, F. Wu, L. Li, Y. Guan, X. Qiu, S. Chen, Y. Li, and S. Wu, “Butylene sulfite as a film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries,” 172, 395 (2007).
54.
54. Y. Yokoyama and M. Jinno, “Identification of accidentally degenerate bands in UV and propylene photoelectron spectra carbonate,” J. Electron Spectrosc. Rel. Phen. 5, 1095 (1974).
http://dx.doi.org/10.1016/0368-2048(74)85067-X
55.
55. S. C. Bera, R. Mukherjee, and M. Chowdhury, “Spectra of benzil,” J. Chem. Phys. 51, 754 (1969).
http://dx.doi.org/10.1063/1.1672065
56.
56. J. Arnett and S. P. McGlynn, “Photorotamerism of aromatic .alpha.-dicarbonyls,” J. Phys. Chem. 79, 626 (1975).
http://dx.doi.org/10.1021/j100573a016
57.
57. S. Lopes, A. Gómez-Zavaglia, L. Lapinski, N. Chattopadhyay, and R. Fausto, “Matrix-isolation FTIR spectroscopy of benzil: Probing the flexibility of the C-C torsional coordinate,” J. Phys. Chem. A 108, 8256 (2004).
http://dx.doi.org/10.1021/jp047116s
58.
58. A. Singh, D. K. Palit, and J. P. Mittal, “Conformational relaxation dynamics in the excited electronic states of benzil in solution,” Chem. Phys. Lett. 360, 443 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00891-6
59.
59. M. Jarvid, A. Johansson, V. Englund, S. Gubanski, and M. R. Andersson, “Electrical tree inhibition by voltage stabilizers,” in IEEE Conference on Electrical Insulation and Dielectric Phenomena, (CEIDP) (Montreal, Canada, 2012) pp. 605608.
60.
60. T. M. Kolev and B. A. Stamboliyska, “Vibrational spectra and structure of benzil and its 18O and d10-labelled derivatives: a quantum chemical and experimental study,” Spectrochim. Acta A 58, 3127 (2002).
http://dx.doi.org/10.1016/S1386-1425(02)00043-4
61.
61. C. Brown and R. Sadanaga, “The crystal structure of benzil,” Acta Cryst. 18, 158 (1965).
http://dx.doi.org/10.1107/S0365110X65000403
62.
62. Q. Shen and K. Hagen, “Gas-phase molecular structure and conformation of benzil as determined by electron diffraction,” J. Phys. Chem. 91, 1357 (1987).
http://dx.doi.org/10.1021/j100290a017
63.
63. A. V. Polevoi, V. M. Matyuk, G. A. Grigoréva, and V. K. Potapov, “Formation of intermediate products during the resonance stepwise polarization of dibenzyl ketone and benzil molecules,” 21, 12 (1987).
64.
64. W. G. Herkstroeter, A. A. Lamola, and G. S. Hammond, “Mechanisms of photochemical reactions in solution. XXVIII.1 Values of triplet excitation energies of selected sensitizers,” J. Am. Chem. Soc. 86, 4537 (1964).
http://dx.doi.org/10.1021/ja01075a005
65.
65. D. J. Morantz and A. J. C. Wright, “Structures of the excited states of benzil and related dicarbonyl molecules,” J. Chem. Phys. 54, 692 (1971).
http://dx.doi.org/10.1063/1.1674897
66.
66. A. Chakrabarty, P. Purkayastha, and N. Chattopadhyay, “Laser induced optacoustic spectroscopy of benzil: Evaluation of structural volume change upon photoisomerization,” J. Photochem. Photobiol. A: Chem. 198, 256 (2008).
http://dx.doi.org/10.1016/j.jphotochem.2008.04.001
67.
67. K. K. Das and D. Majumdar, “Ground and excited states of benzil: A theoretical study,” J. Mol. Struct. (THEOCHEM) 288, 55 (1993).
http://dx.doi.org/10.1016/0166-1280(93)90094-R
68.
68. K. Venkataraman, ed., The Chemistry of Synthetic Dyes (Academic press, New York, 1971).
69.
69. M. Matsuoka, Infrared Absorbing Dyes (Plenum Press, New York, USA, 1990).
70.
70. V. Khodorkovsky and J. Y. Becker, In Organic Conductors: Fundamentals and Applications. (Matcel Dekker, New York, 1994).
71.
71. H. P. Trommsdorff, “Electronic states and spectra of p-benzoquinone,” J. Chem. Phys. 56, 5358 (1972).
http://dx.doi.org/10.1063/1.1677047
72.
72. L. Åsbrink, G. Bieri, C. Fridh, E. Lindholm, and D. P. Chong, “Spectra of p-benzoquinone, studied with HAM/3,” Chem. Phys. 43, 189 (1979).
http://dx.doi.org/10.1016/0301-0104(79)85187-3
73.
73. H. Yasushi, H. Masahiko, E. Masahiro, and N. Hiroshi, “Excited and ionized states of p-benzoquinone and its anion radical: SAC-CI theoretical study,” J. Phys. Chem. A 106, 3838 (2002).
http://dx.doi.org/10.1021/jp013166a
74.
74. P. Jacques, J. Faure, O. Chalvet, and H. H. Jaffe, “A reexamination of the oxygen parameters in the CNDO/S method. Application to UV and photoelectron spectra of p-benzoquinone,” J. Phys. Chem. 85, 473 (1981).
http://dx.doi.org/10.1021/j150605a004
75.
75. A. Kuboyama, Y. Kozima, and J. Maeda, “The CNDO/S-CI calculations of the singlet nπ* and ππ* levels of quinones,” Bull. Chem. Soc (Jpn) 55, 3635 (1982).
http://dx.doi.org/10.1246/bcsj.55.3635
76.
76. A. A. Meier and G. H. Wagniére, “The long-wavelength MCD of some quinones and its interpretation by semi-empirical MO methods,” Chem. Phys. 113, 287 (1987).
http://dx.doi.org/10.1016/0301-0104(87)80156-8
77.
77. S. Coriani, P. Jørgensen, A. Rizzo, K. Ruud, and J. Olsen, “Ab initio determinations of magnetic circular dichroism,” Chem. Phys. Lett. 300, 61 (1999).
http://dx.doi.org/10.1016/S0009-2614(98)01315-3
78.
78. R. Broer and W. Nieuwpoort, “Hole localization and symmetry breaking,” J. Mol. Struct. (THEOCHEM) 458, 19 (1999).
http://dx.doi.org/10.1016/S0166-1280(98)00345-5
79.
79. J. Weber, K. Malsch, and G. Hohlneicher, “Excited electronic states of p-benzoquinone,” Chem. Phys. 264, 275 (2001).
http://dx.doi.org/10.1016/S0301-0104(01)00241-5
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869311
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869311
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869311
2014-03-20
2014-11-23

Abstract

The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type → π* (lone pair to unoccupied π* orbital) has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example -tridecane and cyclohexane) on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869311.html;jsessionid=b1k6h1pidebuh.x-aip-live-06?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869311&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869311
10.1063/1.4869311
SEARCH_EXPAND_ITEM