1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/3/10.1063/1.4869636
1.
1. L. G. Carrascosa, M. Moreno, M. Alvarez, and L. M. Lechuga, TrAC, Trends Anal. Chem. 25, 196 (2006).
http://dx.doi.org/10.1016/j.trac.2005.09.006
2.
2. H. P. Lang, M. Hegner , E. Meyer, and C. Gerber, Nanotechnology 13, R29 (2002).
http://dx.doi.org/10.1088/0957-4484/13/5/202
3.
3. N. V. Lavrik, M. J. Sepniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).
http://dx.doi.org/10.1063/1.1763252
4.
4. M. L. Roukes, Sci. Am. 285, 48 (2001).
http://dx.doi.org/10.1038/scientificamerican0901-48
5.
5. G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, Nature Biotechnology 19, 856 (2001).
http://dx.doi.org/10.1038/nbt0901-856
6.
6. A. Subramanian, P. I. Oden, S. J. Kennel, K. B. Jacobson, R. J. Warmack, T. Thundat, and M. J. Doktycz, Appl. Phys. Lett. 81, 385 (2002).
http://dx.doi.org/10.1063/1.1492308
7.
7. C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, Nature 414, 293 (2001).
http://dx.doi.org/10.1038/35104535
8.
8. S. Kim, T. Rahman, L. R. Senesac, B. H. Davison, and T. Thundat, Scanning 31, 1 (2009).
http://dx.doi.org/10.1002/sca.20139
9.
9. S. Broor, H. S. Chahar, and S. Kaushik, Indian J Microbiol 49, 301 (2009).
http://dx.doi.org/10.1007/s12088-009-0054-5
10.
10. R. Desikan, S. Armel, H. M. Meyer III, and T. Thundat, Nanotechnology 18, 424028 (2007)
http://dx.doi.org/10.1088/0957-4484/18/42/424028
11.
11. D. J. Kim, B. L. Weeks, and L. J. Hope-Weeks, Scanning 29, 245 (2007).
http://dx.doi.org/10.1002/sca.20076
12.
12. V. Tabard-Cossa, M. Godin, I. J. Burgess, T. Monga, R. B. Lennox, and P. Grütter, Anal. Chem. 79, 8136 (2007).
http://dx.doi.org/10.1021/ac071243d
13.
13. C. T. Witkop, M. R. Duffy, E. A. Macias, T. F. Gibbons, J. D. Escobar, K. N. Burwell, and K. K. Knight, American Journal of Preventive Medicine, 38(2), 121126, (2010).
http://dx.doi.org/10.1016/j.amepre.2009.10.005
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869636
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869636
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869636
2014-03-24
2015-04-27

Abstract

Effective detection of Swine H1N1 Hemagglutinin peptide is crucial as it could be used as a positive control to screen for highly infectious flu strains such as Swine-Origin Influenza A (H1N1). Piezoresistive microcantilever arrays present a pathway towards highly sensitive and label-free detection of biomolecules by transducing the antigen-antibody binding into change in resistivity via induced surface stress variation. We demonstrate a mechanical transduction of Swine H1N1 Hemagglutinin peptide binding and suggest the employed technique may offer a potential platform for detection of the H1N1 virus, which could be clinically used to diagnose and provide subsequent relief.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869636.html;jsessionid=au6j4k9gc5bdm.x-aip-live-02?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869636&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Piezoresistive measurement of Swine H1N1 Hemagglutinin peptide binding with microcantilever arrays
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869636
10.1063/1.4869636
SEARCH_EXPAND_ITEM