Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, and P. J. Dale, Thin Solid Films 520, 6291 (2012).
2. M. Bouaziz, J. Ouerfelli, S. Srivastava, J. Bernde, and M. Amlouk, Vacuum 85, 783 (2011).
3. M. Bouaziz, M. Amlouk, S. Belgacem, Thin Solid Films 517, 2527 (2009).
4. T. Kuku and O. Fakolujo, Sol. Energy Mater 16, 199 (1987).
5. D. Avellaneda, M. T. S. Nair, and P. K. Nair, Journal of The Electrochemical Society 157(6), D346 (2010).
6. D. Tiwari, T. K. Chaudhuri, T. Shripathi, U. Deshpande, and R. Rawat, Solar Energy Materials and Solar Cells 113, 165 (2013).
7. L. K. Samanta, Phys. StatusSolidi. (a) 100, K93 (1987).
8. X. Chen, H. Wada, A. Sato, and M. Mieno, J. Solid State Chem. 139, 144 (1998).
9. Q. Chen, X. Dou, Y. Ni, S. Cheng, and S. Zhuang, Journal of Colloid and Interface Science 376,327 (2012).
10. P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, J. Phys. D: Appl. Phys. 43, 215403 (2010).
11. T. K. Chaudhuri, D. Tiwari, Solar Energy Materials and Solar Cells 101, 46 (2012).
12. J. G. Simmons, Phys. Rev. 155, 657 (1967).
13. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) 2nd ed., p. 292.
14. R. Maity, S. Kundoo, and K. K. Chattopadhyay, Solar Energy Materials and Solar Cells 86, 217 (2005).
15. L. Wang, M. I. Nathan, T. Lim, M. A. Khan, and Q. Chen, Appl. Phys. Lett. 68, 1267 (1996).
16. C. T. Sah, R. N. Noyce, and W. Shockley, Proc. IRE 45, 1228 (1957).
17. S. Mridha, R. Ghosh, and D. Basak, J. Electron. Mater. 36, 1643 (2007).
18. O. Breitenstein, P. Altermatt, K. Ramspeck, and A. Schenk, Proceedings of the 21st European Photovoltaic Solar Energy Conference, edited by J. Poortmans, H. Ossenbrink, E. Dunlop, and P. Helm (WIP, Munich, Germany, 2006) 625.
19. A. Schenk and U. Krumbein, J. Appl. Phys. 78, 3185 (1995).
20. M. Brötzmann, U. Vetter, and H. Hofsäss, J. Appl. Phys. 106, 063704 (2009).
21. P. G. McCafferty, A. Sellai, P. Dawson, and H. Elabd, Solid-State Electronics 39, 583 (1996).
22. Y. J. Lin, S. S. Chang, H. C. Chang, and Y. C. Liu, J. Phys. D: Appl. Phys. 42, 075308 (2009).
23. L. Stafford, L. F. Voss, S. J. Pearton, J. J. Chen, F. Ren, Appl. Phys. Lett. 89, 132110 (2006).
24. E. Arslan, S. Altindal, S. Ozcelik, and E. Ozbay, Semicond. Sci. Technol. 24, 075003 (2009).
25. S. S. Babkair, A. A. Ansari, N. M. Al-Twarqi, Materials Chemistry and Physics 127, 296 (2011).
26. V. K. Gandotra, K. V. Ferdinand, C. Jagadish, A. Kumar, and P. C. Mathur, Phys. Status Solidi (A) 98, 595 (1986).
27. C. Guillén and J. Herrero, J. Appl. Phys. 71, 5479 (1992).

Data & Media loading...


Article metrics loading...



The temperature dependent electrical properties of the dropcasted Cu SnS films have been measured in the temperature range 140 K to 317 K. The log I versus √V plot shows two regions. The region at lower bias is due to electrode limited Schottky emission and the higher bias region is due to bulk limited Poole Frenkel emission. The ideality factor is calculated from the ln I versus V plot for different temperatures fitted with the thermionic emission model and is found to vary from 6.05 eV to 12.23 eV. This large value is attributed to the presence of defects or amorphous layer at the Ag / Cu SnS interface. From the Richardson's plot the Richardson's constant and the barrier height were calculated. Owing to the inhomogeneity in the barrier heights, the Richardson's constant and the barrier height were also calculated from the modified Richardson's plot. The I-V-T curves were also fitted using the thermionic field emission model. The barrier heights were found to be higher than those calculated using thermionic emission model. From the fit of the I-V-T curves to the field emission model, field emission was seen to dominate in the low temperature range of 140 K to 177 K. The temperature dependent current graphs show two regions of different mechanisms. The log I versus 1000/T plot gives activation energies E = 0.367095 − 0.257682 eV and E = 0.038416 − 0.042452 eV. The log (I/T2) versus 1000/T graph gives trap depths Φ = 0.314159 − 0.204752 eV and Φ = 0.007425 − 0.011163 eV. With increasing voltage the activation energy E and the trap depth Φ decrease. From the ln (IT1/2) versus 1/T1/4 graph, the low temperature region is due to variable range hopping mechanism and the high temperature region is due to thermionic emission.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd