Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/3/10.1063/1.4869639
1.
1. D. M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, and P. J. Dale, Thin Solid Films 520, 6291 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.05.085
2.
2. M. Bouaziz, J. Ouerfelli, S. Srivastava, J. Bernde, and M. Amlouk, Vacuum 85, 783 (2011).
http://dx.doi.org/10.1016/j.vacuum.2010.10.001
3.
3. M. Bouaziz, M. Amlouk, S. Belgacem, Thin Solid Films 517, 2527 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.039
4.
4. T. Kuku and O. Fakolujo, Sol. Energy Mater 16, 199 (1987).
http://dx.doi.org/10.1016/0165-1633(87)90019-0
5.
5. D. Avellaneda, M. T. S. Nair, and P. K. Nair, Journal of The Electrochemical Society 157(6), D346 (2010).
http://dx.doi.org/10.1149/1.3384660
6.
6. D. Tiwari, T. K. Chaudhuri, T. Shripathi, U. Deshpande, and R. Rawat, Solar Energy Materials and Solar Cells 113, 165 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.02.017
7.
7. L. K. Samanta, Phys. StatusSolidi. (a) 100, K93 (1987).
http://dx.doi.org/10.1002/pssa.2211000165
8.
8. X. Chen, H. Wada, A. Sato, and M. Mieno, J. Solid State Chem. 139, 144 (1998).
9.
9. Q. Chen, X. Dou, Y. Ni, S. Cheng, and S. Zhuang, Journal of Colloid and Interface Science 376,327 (2012).
http://dx.doi.org/10.1016/j.jcis.2012.03.015
10.
10. P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, J. Phys. D: Appl. Phys. 43, 215403 (2010).
http://dx.doi.org/10.1088/0022-3727/43/21/215403
11.
11. T. K. Chaudhuri, D. Tiwari, Solar Energy Materials and Solar Cells 101, 46 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.02.012
12.
12. J. G. Simmons, Phys. Rev. 155, 657 (1967).
http://dx.doi.org/10.1103/PhysRev.155.657
13.
13. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) 2nd ed., p. 292.
14.
14. R. Maity, S. Kundoo, and K. K. Chattopadhyay, Solar Energy Materials and Solar Cells 86, 217 (2005).
http://dx.doi.org/10.1016/j.solmat.2004.07.008
15.
15. L. Wang, M. I. Nathan, T. Lim, M. A. Khan, and Q. Chen, Appl. Phys. Lett. 68, 1267 (1996).
http://dx.doi.org/10.1063/1.115948
16.
16. C. T. Sah, R. N. Noyce, and W. Shockley, Proc. IRE 45, 1228 (1957).
http://dx.doi.org/10.1109/JRPROC.1957.278528
17.
17. S. Mridha, R. Ghosh, and D. Basak, J. Electron. Mater. 36, 1643 (2007).
http://dx.doi.org/10.1007/s11664-007-0272-8
18.
18. O. Breitenstein, P. Altermatt, K. Ramspeck, and A. Schenk, Proceedings of the 21st European Photovoltaic Solar Energy Conference, edited by J. Poortmans, H. Ossenbrink, E. Dunlop, and P. Helm (WIP, Munich, Germany, 2006) 625.
19.
19. A. Schenk and U. Krumbein, J. Appl. Phys. 78, 3185 (1995).
http://dx.doi.org/10.1063/1.360007
20.
20. M. Brötzmann, U. Vetter, and H. Hofsäss, J. Appl. Phys. 106, 063704 (2009).
http://dx.doi.org/10.1063/1.3212987
21.
21. P. G. McCafferty, A. Sellai, P. Dawson, and H. Elabd, Solid-State Electronics 39, 583 (1996).
http://dx.doi.org/10.1016/0038-1101(95)00162-X
22.
22. Y. J. Lin, S. S. Chang, H. C. Chang, and Y. C. Liu, J. Phys. D: Appl. Phys. 42, 075308 (2009).
http://dx.doi.org/10.1088/0022-3727/42/7/075308
23.
23. L. Stafford, L. F. Voss, S. J. Pearton, J. J. Chen, F. Ren, Appl. Phys. Lett. 89, 132110 (2006).
http://dx.doi.org/10.1063/1.2357855
24.
24. E. Arslan, S. Altindal, S. Ozcelik, and E. Ozbay, Semicond. Sci. Technol. 24, 075003 (2009).
http://dx.doi.org/10.1088/0268-1242/24/7/075003
25.
25. S. S. Babkair, A. A. Ansari, N. M. Al-Twarqi, Materials Chemistry and Physics 127, 296 (2011).
http://dx.doi.org/10.1016/j.matchemphys.2011.02.008
26.
26. V. K. Gandotra, K. V. Ferdinand, C. Jagadish, A. Kumar, and P. C. Mathur, Phys. Status Solidi (A) 98, 595 (1986).
http://dx.doi.org/10.1002/pssa.2210980233
27.
27. C. Guillén and J. Herrero, J. Appl. Phys. 71, 5479 (1992).
http://dx.doi.org/10.1063/1.350520
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/3/10.1063/1.4869639
Loading
/content/aip/journal/adva/4/3/10.1063/1.4869639
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/3/10.1063/1.4869639
2014-03-24
2016-09-25

Abstract

The temperature dependent electrical properties of the dropcasted Cu SnS films have been measured in the temperature range 140 K to 317 K. The log I versus √V plot shows two regions. The region at lower bias is due to electrode limited Schottky emission and the higher bias region is due to bulk limited Poole Frenkel emission. The ideality factor is calculated from the ln I versus V plot for different temperatures fitted with the thermionic emission model and is found to vary from 6.05 eV to 12.23 eV. This large value is attributed to the presence of defects or amorphous layer at the Ag / Cu SnS interface. From the Richardson's plot the Richardson's constant and the barrier height were calculated. Owing to the inhomogeneity in the barrier heights, the Richardson's constant and the barrier height were also calculated from the modified Richardson's plot. The I-V-T curves were also fitted using the thermionic field emission model. The barrier heights were found to be higher than those calculated using thermionic emission model. From the fit of the I-V-T curves to the field emission model, field emission was seen to dominate in the low temperature range of 140 K to 177 K. The temperature dependent current graphs show two regions of different mechanisms. The log I versus 1000/T plot gives activation energies E = 0.367095 − 0.257682 eV and E = 0.038416 − 0.042452 eV. The log (I/T2) versus 1000/T graph gives trap depths Φ = 0.314159 − 0.204752 eV and Φ = 0.007425 − 0.011163 eV. With increasing voltage the activation energy E and the trap depth Φ decrease. From the ln (IT1/2) versus 1/T1/4 graph, the low temperature region is due to variable range hopping mechanism and the high temperature region is due to thermionic emission.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/3/1.4869639.html;jsessionid=l_wEQ9Mm6vg1fmyyKNZaHWfn.x-aip-live-02?itemId=/content/aip/journal/adva/4/3/10.1063/1.4869639&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/3/10.1063/1.4869639&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/3/10.1063/1.4869639'
Right1,Right2,Right3,