1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/4/10.1063/1.4863943
1.
1. David H. Levy, Skywatching (Nature Company, Australia, 1984).
2.
2. C. Rolf, H. P. Trautvetter, and W. S. Rodney, Rep. Prog. Phys. 50, 233 (1987).
http://dx.doi.org/10.1088/0034-4885/50/3/001
10.
10. A. S. Jensen, K. Riisager, D. V. Fedorov, and E. Garrida, Rev. Mod. Phys. 76, 215 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.215
11.
11. K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.252501
12.
12. J. H. Hamilton, Treatise Heavy Ion Science, Vol. 8, Ed. D. A. Bromley (Plenum Press, New York and London, 1989), pp. 398.
13.
13. M. Pfutzner, M. Karny, L. V. Grigorenko, and K. Riisager, Rev. Mod. Phys. 84, 567 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.567
14.
14. K. Heyde, P. van Isacker, M. Waroquier, J. L. Wood, and R. A. Meyer, Phys. Rep. 102, 291 (1983).
http://dx.doi.org/10.1016/0370-1573(83)90085-6
15.
15. J. L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. van Duppen, Phys. Rep. 215, 101 (1992).
http://dx.doi.org/10.1016/0370-1573(92)90095-H
16.
16. K. Riisager, P. Butler, M. Huyse, and R. Krucken, HIE-ISOLDE: the scientific opportunities, CERN-2007-008 (2007).
17.
17. N. Orr, “Physics with Reaccelerated ISOL Beams,” J. Phys. G: Nucl. Part. Phys. 38, 020301 (2011).
http://dx.doi.org/10.1088/0954-3899/38/2/020301
18.
18. J. Dobaczewski, “Open Problems in Nuclear Structure Theory,” J. Phys. G: Nucl. Part. Phys. 37, 064001 (2010).
http://dx.doi.org/10.1088/0954-3899/37/6/064001
19.
19. R. B. Cakirli and R. F. Casten, Phys. Rev. C 78, 041301 (2008).
http://dx.doi.org/10.1103/PhysRevC.78.041301
20.
20. Ikuko Hamamoto, Phys. Rev. C 85, 064329 (2012).
http://dx.doi.org/10.1103/PhysRevC.85.064329
21.
21. Carlos Bertulani, 9th Symposium on Nuclei in the Cosmos (NIC IX), Proceedings of Science(PoS) 040 (2006).
22.
22.National Nuclear Data Center, Brookhaven National Laboratory, http://www.nndc.bnl.gov/.
23.
23. G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, and T. Papenbrock, Phys. Rev. Lett. 109, 032502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.032502
24.
24. P. Walker and G. Dracoulis, Nature(London) 399, 35 (1999).
http://dx.doi.org/10.1038/19911
25.
25. G. D. Dracoulis, Physica Scripta T 88, 54 (2000).
http://dx.doi.org/10.1238/Physica.Topical.088a00054
26.
26. P. M. Walker and G. D. Dracoulis, Hyperfine Interactions 135, 83 (2001).
http://dx.doi.org/10.1023/A:1013915200556
27.
27. C.-B. Moon, G. D. Dracoulis, R. A. Bark, A. P. Byrne, P. A. Davidson, T. Kibėdi, G. J. Lane, and A. N. Wilson, J. Korean Phys. Soc. 59, 1525 (2011).
http://dx.doi.org/10.3938/jkps.59.1525
28.
28. M.-G. Porquet, S. Pėru, and M. Girol, Eur. Phys. J. A 25, 319 (2005).
http://dx.doi.org/10.1140/epja/i2005-10137-8
29.
29. H. L. Ravn and B. W. Allardyce, Treatise Heavy Ion Science, Vol. 8, Ed. D. A. Bromley (Plenum Press, New York and London, 1989), pp. 363439.
30.
30. I. Tanihata, Treatise Heavy Ion Science, Vol. 8, Ed. D. A. Bromley (Plenum Press, New York and London, 1989), pp. 443514.
31.
31. David Arnett, Supernovae and Nucleosynthesis (Princeton University Press, Princeton, 1996).
32.
32. K. Heyde, Basic Ideas and Concepts in Nuclear Physics (IOP Publishing, Bristol and Philadelphia, 1999).
33.
33. H. Schatz, A. Aprahamian, J. Görres, M. Wiescher, T. Rauscher, J. F. Rembges, F.-K. Thielemann, B. Pfeiffer, P. Möller, K.-L. Kratz, H. Herndl, B. A. Brown, and H. Rebel, Phys. Rep. 294, 167 (1998).
http://dx.doi.org/10.1016/S0370-1573(97)00048-3
34.
34. Y. Satou et al., J. Korean Phys. Soc. 59, 1467 (2011).
http://dx.doi.org/10.3938/jkps.59.1467
35.
35. E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.082502
36.
36. E. Poirier et al., Phys. Rev. C 69, 034307 (2004).
http://dx.doi.org/10.1103/PhysRevC.69.034307
37.
37. E. Clément et al., Phys. Rev. C 75, 054313 (2007).
http://dx.doi.org/10.1103/PhysRevC.75.054313
38.
38. A. Navin, F. de Oliveira Santos, P. Roussel-Chomaz, and O. Sorlin, J. Phys. G: Nucl. Part. Phys. 38, 024004 (2011).
http://dx.doi.org/10.1088/0954-3899/38/2/024004
39.
39. K. Tshoo et al., J. Korean Phys. Soc. 59, 1529 (2011).
http://dx.doi.org/10.3938/jkps.59.1529
40.
40. G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chinese Phys. C 36, 1603 (2012).
http://dx.doi.org/10.1088/1674-1137/36/12/003
41.
41. J. Giovinazzo et al., Phys. Rev. Lett. 99, 102501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.102501
42.
42. K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.192501
43.
43. I. A. Egorova et al., Phys. Rev. Lett. 109, 202502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.202502
44.
44. R. Diehl, New Astron. Rev. 50, 534 (2006).
http://dx.doi.org/10.1016/j.newar.2006.06.082
45.
45. A. F. Iyudin et al., Astrophys. J. Lett. 284, L1 (1994).
46.
46. A. F. Iyudin et al., Nature 396, 142 (1998).
http://dx.doi.org/10.1038/24106
47.
47. L.-S. The, D. D. Clayton, L. Jin, and B. S. Meyer, Astrophysical J. 504, 500 (1998).
http://dx.doi.org/10.1086/306057
48.
48. L. Trache, F. Carstoiu, A. M. Mukhameazhanov, and R. E. Tribble, Phys. Rev. C 66, 035801 (2002).
http://dx.doi.org/10.1103/PhysRevC.66.035801
49.
49. P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53, 219 (2003).
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110406
50.
50. P. G. Hansen and B. M. Sherrill, Nucl. Phys. A 693, 133 (2001).
http://dx.doi.org/10.1016/S0375-9474(01)01104-6
51.
51. E. C. Simpson, J. A. Tostovin, D. Bazin, and A. Gade, Phys. Rev. C 79, 064621 (2009).
http://dx.doi.org/10.1103/PhysRevC.79.064621
52.
52. D. Miller et al., Phys. Rev. C 79, 054306 (2009).
http://dx.doi.org/10.1103/PhysRevC.79.054306
53.
53. D. Bazin et al., Phys. Rev. Lett. 91, 012501 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.012501
54.
54. K. Yoneda et al., Phys. Rev. C 74, 021303(R) (2006).
http://dx.doi.org/10.1103/PhysRevC.74.021303
55.
55. A. Gade et al., Phys. Rev C 76, 024317 (2007).
http://dx.doi.org/10.1103/PhysRevC.76.024317
56.
56. A. Gade et al., Phys. Rev. C 83, 044305 (2011).
http://dx.doi.org/10.1103/PhysRevC.83.044305
57.
57. C. Rolf and W. S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988).
58.
58. L. Trache, F. Carstoiu, C. A. Gagliardi, and R. E. Tribble, Phys. Rev. C 69, 032802(R) (2002).
http://dx.doi.org/10.1103/PhysRevC.69.032802
59.
59. A. Banu et al., Phys. Rev 84, 015803 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.015803
60.
60. A. Banu et al., Phys. Rev. C 86, 015806 (2012).
http://dx.doi.org/10.1103/PhysRevC.86.015806
61.
61. S. Padgett et al., Phys. Rev. C 82, 064314 (2010).
http://dx.doi.org/10.1103/PhysRevC.82.064314
62.
62. J. S. Thomas et al., Phys. Rev. C 76, 044302 (2007).
http://dx.doi.org/10.1103/PhysRevC.76.044302
63.
63. J. A. Winger et al., Phys. Rev. C 81, 044303 (2010).
http://dx.doi.org/10.1103/PhysRevC.81.044303
64.
64. D. Verney et al., Phys. Rev. C 76, 054312 (2007).
http://dx.doi.org/10.1103/PhysRevC.76.054312
65.
65. S. Franchoo et al., Phys. Rev. Lett. 81, 3100 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3100
66.
66. K. T. Flanagan et al., Phys. Rev. Lett. 103, 142501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.142501
67.
67. S. Franchoo et al., Phys. Rev.C 64, 054308 (2001).
http://dx.doi.org/10.1103/PhysRevC.64.054308
68.
68. T. Otsuka, T. Suzuki, M. Homma, Y. Utsuno, N. Tsunoda, K. Tsukiyama, and M. Hjorth-Jensen, Phys. Rev. Lett. 104, 012501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.012501
69.
69. T. Otsuka et al., Phys. Rev. Lett. 97, 162501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.162501
70.
70. H. Watanabe et al., Phys. Rev. Lett. 111, 152501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.152501
71.
71. L. P. Gffney et al., Nature 497, 199 (2013).
http://dx.doi.org/10.1038/nature12073
72.
72. P. Papadakis et al., J. of Physics: Con. Ser. 312, 052017 (2011).
http://dx.doi.org/10.1088/1742-6596/312/5/052017
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4863943
Loading
/content/aip/journal/adva/4/4/10.1063/1.4863943
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4863943
2014-02-03
2014-08-28

Abstract

This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4863943.html;jsessionid=h3gfga7oc4kr9.x-aip-live-06?itemId=/content/aip/journal/adva/4/4/10.1063/1.4863943&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4863943
10.1063/1.4863943
SEARCH_EXPAND_ITEM