Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/4/10.1063/1.4865588
1.
1. P. Prati et al., Proc. Intern. Confer. on Frontiers in Nuclear Structure and Reactions, Crete, 2007, AIP Conf. Proc. 1012, 305 (2008), and references therein.
http://dx.doi.org/10.1063/1.2939316
2.
2. A. C. Mueller and B. M. Sherrill, Ann. Rev. Nucl. Part. Sci. 43, 529 (1993).
http://dx.doi.org/10.1146/annurev.ns.43.120193.002525
3.
3. M. S. Smith and K. E. Rehm, Ann. Rev. Nucl. Part. Sci. 51, 91 (2001).
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132430
4.
4. K. E. Rehm et al., Phys. Rev. C 52, R460 (1995).
http://dx.doi.org/10.1103/PhysRevC.52.R460
5.
5. K. E. Rehm et al., Phys. Rev. C 55, R566 (1997).
http://dx.doi.org/10.1103/PhysRevC.55.R566
6.
6. K. E. Rehm et al., Phys. Rev. Lett. 80, 676 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.676
8.
8. R. C. Haight et al., Nucl. Instrum. Methods 212, 245 (1983).
http://dx.doi.org/10.1016/0167-5087(83)90699-3
9.
9. G. Savard et al., Nucl. Instr. and Meth. 204, 582 (2003).
http://dx.doi.org/10.1016/S0168-583X(02)02134-1
10.
10. O. Kofoed-Hansen and K. O. Nielsen, Phys. Rev. 82, 96 (1951).
http://dx.doi.org/10.1103/PhysRev.82.96
11.
11. T. J. Symons et al., Phys. Rev. Lett. 42, 40 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.40
12.
12. Argonne National Laboratory Annual Report ANL-91/12 p.68 (1991).
13.
13. Argonne National Laboratory Annual Report ANL-97/14 p.77 (1997).
14.
14. K. E. Rehm et al., Phys. Rev. Lett. 81, 3341 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3341
15.
15. B. Harss et al., Rev. Sci. Instrum. 71, 380 (2000).
http://dx.doi.org/10.1063/1.1150211
16.
16. X. D. Tang et al., Phys. Rev. C 81, 045809 (2010).
http://dx.doi.org/10.1103/PhysRevC.81.045809
17.
17. K. E. Rehm et al., Nucl. Instrum. Methods A 647, 3 (2011).
http://dx.doi.org/10.1016/j.nima.2011.04.011
18.
18. J. R. Votaw and R. J. Nickles, Nucl. Instrum. Methods A 281, 216 (1989).
http://dx.doi.org/10.1016/0168-9002(89)91238-2
19.
19. K. E. Rehm and F. L. H. Wolfs, Nucl. Instrum. Methods A 273, 262 (1988).
http://dx.doi.org/10.1016/0168-9002(88)90822-4
21.
21. R. Vondrasek et al., Proceeding of the Heavy-Ion Accelerator Technology (HIAT) Conference 2012, June 18-21, 2012, Chicago, IL, p. 45 (2012), http://www.JACoW.org.
22.
22. P. N. Ostroumov, P. Billquist, M. Portillo, and W. Q. Shen, Rev. Scient. Instrum. 73, 56 (2002).
http://dx.doi.org/10.1063/1.1419227
23.
23. R. N. Wolf et al., Nucl. Instrum. Meth. A 686, 82 (2012).
http://dx.doi.org/10.1016/j.nima.2012.05.067
24.
24. J. Grindlay et al., Astrophys. J. 205, L127 (1976).
http://dx.doi.org/10.1086/182105
25.
25. R. D. Belian, J. P. Conner, and W. D. Evans, Astrophys. J. 206, L135 (1976).
http://dx.doi.org/10.1086/182151
26.
26. S. E. Woosley and R. E. Tamm, Nature 263, 101 (1976).
http://dx.doi.org/10.1038/263101a0
27.
27. D. Q. Lamb and F. K. Lamb, Astrophys. J. 220, 220 (1978).
28.
28. H. Schatz and K. E. Rehm, Nucl. Phys. A 777, 601 (2006).
http://dx.doi.org/10.1016/j.nuclphysa.2005.05.200
29.
29. D. Hutcheon et al., Nucl. Instrum. Methods A 689, 70 (2012) and references therein.
http://dx.doi.org/10.1016/j.nima.2012.05.069
30.
30. S. E. Hale et al., Phys. Rev. C 70, 045802 (2004).
http://dx.doi.org/10.1103/PhysRevC.70.045802
31.
31. C. L. Jiang et al., Phys. Rev. C 80, 044613 (2009).
http://dx.doi.org/10.1103/PhysRevC.80.044613
32.
32. A. H. Wuosmaa, J. P. Schiffer, B. B. Back, C. J. Lister, and K. E. Rehm, Nucl. Inst. Meth A 580, 1290 (2007).
http://dx.doi.org/10.1016/j.nima.2007.07.029
33.
33. J. C. Lighthall et al., Nucl. Inst. Meth A 622, 97 (2010).
http://dx.doi.org/10.1016/j.nima.2010.06.220
34.
34. A. Sonzogni et al., Phys. Rev. Lett. 84, 1651 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1651
35.
35. C. M. Deibel et al., Phys. Rev. C 84, 045802 (2011).
http://dx.doi.org/10.1103/PhysRevC.84.045802
36.
36. J. M. Figueira et al., Nucl. Inst. Meth A 670, 32 (2012).
http://dx.doi.org/10.1016/j.nima.2011.12.048
37.
37. C. M. Deibel et al., Proc. Sci., Nuclei in the Cosmos XI 056 (2010).
38.
38. C. M. Deibel et al., Proc. Sci., Nuclei in the Cosmos XII 044 (2011).
39.
39. E. M. Burbidge et al., Rev. Mod. Phys. 29, 547 (1957).
http://dx.doi.org/10.1103/RevModPhys.29.547
40.
40. J. J. Cowan, F.-K. Thielemann, and J. W. Truran, Phys. Rep. 208, 267 (1991).
http://dx.doi.org/10.1016/0370-1573(91)90070-3
41.
41. M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97 (2007).
http://dx.doi.org/10.1016/j.physrep.2007.06.002
42.
42. Y.-Z. Qian, Prog. Part. Nucl. Phys. 50, 153 (2003).
http://dx.doi.org/10.1016/S0146-6410(02)00178-3
43.
43. F.-K. Thielemann et al., Prog. Part. Nucl. Phys. 66, 346 (2011).
http://dx.doi.org/10.1016/j.ppnp.2011.01.032
44.
44. C. Sneden, J. J. Cowan, and R. Gallino, Ann. Rev. Astron, Astrophys. 46, 241 (2008).
http://dx.doi.org/10.1146/annurev.astro.46.060407.145207
45.
45. J. A. Clark and G. Savard, Int. J. Mass Spectrom. 349-350, 81 (2013).
http://dx.doi.org/10.1016/j.ijms.2013.05.021
46.
46. G. Savard et al., Int. J. Mass Spectrom. Ion Process. 251, 252 (2006).
http://dx.doi.org/10.1016/j.ijms.2006.01.047
47.
47. T. Eronen et al., Eur. Phys. J. A 48, 46 (2012).
http://dx.doi.org/10.1140/epja/i2012-12046-1
48.
48. M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008).
http://dx.doi.org/10.1140/epja/i2007-10528-9
49.
49. P. Delheij et al., Hyperfine Interact. 173, 123 (2006).
http://dx.doi.org/10.1007/s10751-007-9573-9
50.
50. L. Chen et al., Nucl. Phys. A882, 71 (2012).
http://dx.doi.org/10.1016/j.nuclphysa.2012.03.002
51.
51. P. Hosmer et al., Phys. Rev. C 82, 025806 (2010).
http://dx.doi.org/10.1103/PhysRevC.82.025806
52.
52. J. A. Winger et al., Phys. Rev. Lett. 102, 142502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.142502
53.
53. S. Brett et al., Eur. Phys. J. A 48, 184 (2012).
http://dx.doi.org/10.1140/epja/i2012-12184-4
54.
54. G. Savard et al., Phys. Lett. A 158, 247 (1991).
http://dx.doi.org/10.1016/0375-9601(91)91008-2
55.
55. L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).
http://dx.doi.org/10.1103/RevModPhys.58.233
56.
56. M. König et al., Int. J. Mass Spectrom. Ion Process. 142, 95 (1995).
http://dx.doi.org/10.1016/0168-1176(95)04146-C
57.
57. G. Bollen et al., J. Appl. Phys. 68, 4355 (1990).
http://dx.doi.org/10.1063/1.346185
58.
58. G. Gräff, H. Kalinowsky, and J. Traut, Z. Phys. A 297, 35 (1980).
http://dx.doi.org/10.1007/BF01414243
59.
59. G. Savard et al., Phys. Rev. Lett. 95, 102501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.102501
60.
60. J. A. Clark et al., Phys. Rev. Lett. 92, 192501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.192501
61.
61. J. A. Clark et al., Phys. Rev. C 75, 032801R (2007).
http://dx.doi.org/10.1103/PhysRevC.75.032801
62.
62. J. Fallis et al., Phys. Rev. C 84, 045807 (2011).
http://dx.doi.org/10.1103/PhysRevC.84.045807
63.
63. C. Fröhlich et al., Phys. Rev. Lett. 96, 142502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.142502
64.
64. J. Fallis et al., Phys. Rev. C 78, 022801R (2008).
http://dx.doi.org/10.1103/PhysRevC.78.022801
65.
65. J. Van Schelt et al., Phys. Rev. C 85, 045805 (2012).
http://dx.doi.org/10.1103/PhysRevC.85.045805
66.
66. J. Van Schelt et al., Phys. Rev. Lett. 111, 061102 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.061102
67.
67. P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995).
http://dx.doi.org/10.1006/adnd.1995.1002
68.
68. A. Kankainen, J. Äystö, and A. Jokinen, J. Phys. G 39, 093101 (2012).
http://dx.doi.org/10.1088/0954-3899/39/9/093101
69.
69. D. K. Sharp et al., Phys. Rev. C 87, 014312 (2013).
http://dx.doi.org/10.1103/PhysRevC.87.014312
70.
70. C. R. Hoffman et al., Phys. Rev. C 85, 054318 (2012).
http://dx.doi.org/10.1103/PhysRevC.85.054318
71.
71. B. B. Back et al., Phys. Rev. Lett. 104, 132501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.132501
72.
72. A. H. Wuosmaa et al., Phys. Rev. Lett. 105, 132501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.132501
73.
73. B. P. Kay et al., Phys. Rev. C 84, 024324 (2011).
http://dx.doi.org/10.1103/PhysRevC.84.024324
74.
74. S. Bedoor et al., Phys. Rev. C 88, 011304 (2013).
http://dx.doi.org/10.1103/PhysRevC.88.011304
75.
75. C. R. Hoffman et al., Phys. Rev. C 88, 044317 (2013).
http://dx.doi.org/10.1103/PhysRevC.88.044317
76.
76. K. Kimura et al., Nucl. Inst. Meth A 538, 608 (2005).
http://dx.doi.org/10.1016/j.nima.2004.08.100
77.
77. C. M. Deibel et al., to be published.
78.
78. A. Couture et al., to be published.
79.
79. R. M. Yee et al., Phys. Rev. Lett. 110, 092501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.092501
80.
80. G. Li et al., Phys. Rev. Lett. 110, 092502 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.092502
81.
81. N. D. Scielzo et al., Nucl. Instrum. Methods Phys. Res., Sect. A 681, 94 (2012).
http://dx.doi.org/10.1016/j.nima.2012.04.035
82.
82. Y. Momozaki, J. Nolen, C. Reed, V. Novick, and J. Specht, J. Instr. 4, 4005 (2009).
http://dx.doi.org/10.1088/1748-0221/4/04/P04005
83.
83. F. Wenander, Proc. Intern. Symp. on Electr. Beam Ion Sources and Traps, April 7-10, 2010, Stockholm, Sweden, Vol. 5, p. C10004.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4865588
Loading
/content/aip/journal/adva/4/4/10.1063/1.4865588
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4865588
2014-02-06
2016-12-05

Abstract

Reactions involving short-lived nuclei play an important role in nuclear astrophysics, especially in explosive scenarios which occur in novae, supernovae or X-ray bursts. This article describes the nuclear astrophysics program with radioactive ion beams at the ATLAS accelerator at Argonne National Laboratory. The CARIBU facility as well as recent improvements for the in-flight technique are discussed. New detectors which are important for studies of the rapid proton or the rapid neutron-capture processes are described. At the end we briefly mention plans for future upgrades to enhance the intensity, purity and the range of in-flight and CARIBU beams.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4865588.html;jsessionid=XH0Gi1vIb2MaQOUmV06pfcyR.x-aip-live-06?itemId=/content/aip/journal/adva/4/4/10.1063/1.4865588&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/4/10.1063/1.4865588&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/4/10.1063/1.4865588'
Right1,Right2,Right3,