1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
The accretion of solar material onto white dwarfs: No mixing with core material implies that the mass of the white dwarf is increasing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/4/10.1063/1.4866984
1.
1. A. M. Khokhlov, A&A 245, 114 (1991).
2.
2. D. Kasen, F. K. Röpke, and S. E. Woosley, Nature 460, 869 (2009).
http://dx.doi.org/10.1038/nature08256
3.
3. S. E. Woosley and D. Kasen, Astrophys. J. 734, 38 (2011),
http://dx.doi.org/10.1088/0004-637X/734/1/38
3.arXiv:1010.5292 [astro-ph.HE].
4.
4. D. A. Howell, A. Conley, M. Della Valle, P. E. Nugent, S. Perlmutter, G. H. Marion, K. Krisciunas, C. Badenes, P. Mazzali, G. Aldering, P. Antilogus, E. Baron, A. Becker, C. Baltay, S. Benetti, S. Blondin, D. Branch, E. F. Brown, S. Deustua, A. Ealet, R. S. Ellis, D. Fouchez, W. Freedman, A. Gal-Yam, S. Jha, D. Kasen, R. Kessler, A. G. Kim, D. C. Leonard, W. Li, M. Livio, D. Maoz, F. Mannucci, T. Matheson, J. D. Neill, K. Nomoto, N. Panagia, K. Perrett, M. Phillips, D. Poznanski, R. Quimby, A. Rest, A. Riess, M. Sako, A. M. Soderberg, L. Strolger, R. Thomas, M. Turatto, S. van Dyk, and W. M. Wood-Vasey, ArXiv e-prints: White Paper Submitted to the Astro 2010 Decadel Survey (2009), arXiv:0903.1086 [astro-ph.SR].
5.
5. D. Branch, M. Livio, L. R. Yungelson, F. R. Boffi, and E. Baron, PASP 107, 1019 (1995).
http://dx.doi.org/10.1086/133657
6.
6. W. Hillebrandt and J. C. Niemeyer, Ann. Rev. Ast. Ap. 38, 191 (2000),
http://dx.doi.org/10.1146/annurev.astro.38.1.191
7.
7. B. Leibundgut, Ast. Ap. Rev. 10, 179 (2000),
8.
8. B. Leibundgut, Ann. Rev. Ast. Ap. 39, 67 (2001).
http://dx.doi.org/10.1146/annurev.astro.39.1.67
9.
9. K. Nomoto, T. Uenishi, C. Kobayashi, H. Umeda, T. Ohkubo, I. Hachisu, and M. Kato, in From Twilight to Highlight: The Physics of Supernovae, edited by W. Hillebrandt and B. Leibundgut (2003), pp. 115+.
10.
10. D. A. Howell, Nature Communications 2, 350 (2011),
http://dx.doi.org/10.1038/ncomms1344
10.arXiv:1011.0441 [astro-ph.CO].
11.
11. P. E. Nugent, M. Sullivan, S. B. Cenko, R. C. Thomas, D. Kasen, D. A. Howell, D. Bersier, J. S. Bloom, S. R. Kulkarni, M. T. Kandrashoff, A. V. Filippenko, J. M. Silverman, G. W. Marcy, A. W. Howard, H. T. Isaacson, K. Maguire, N. Suzuki, J. E. Tarlton, Y.-C. Pan, L. Bildsten, B. J. Fulton, J. T. Parrent, D. Sand, P. Podsiadlowski, F. B. Bianco, B. Dilday, M. L. Graham, J. Lyman, P. James, M. M. Kasliwal, N. M. Law, R. M. Quimby, I. M. Hook, E. S. Walker, P. Mazzali, E. Pian, E. O. Ofek, A. Gal-Yam, and D. Poznanski, Nature 480, 344 (2011),
http://dx.doi.org/10.1038/nature10644
11.arXiv:1110.6201 [astro-ph.CO].
12.
12. W. Li, J. S. Bloom, P. Podsiadlowski, A. A. Miller, S. B. Cenko, S. W. Jha, M. Sullivan, D. A. Howell, P. E. Nugent, N. R. Butler, E. O. Ofek, M. M. Kasliwal, J. W. Richards, A. Stockton, H.-Y. Shih, L. Bildsten, M. M. Shara, J. Bibby, A. V. Filippenko, M. Ganeshalingam, J. M. Silverman, S. R. Kulkarni, N. M. Law, D. Poznanski, R. M. Quimby, C. McCully, B. Patel, K. Maguire, and K. J. Shen, Nature 480, 348 (2011),
http://dx.doi.org/10.1038/nature10646
12.arXiv:1109.1593 [astro-ph.CO].
13.
13. J. S. Bloom, D. Kasen, K. J. Shen, P. E. Nugent, N. R. Butler, M. L. Graham, D. A. Howell, U. Kolb, S. Holmes, C. A. Haswell, V. Burwitz, J. Rodriguez, and M. Sullivan, ApJL 744, L17 (2012),
http://dx.doi.org/10.1088/2041-8205/744/2/L17
13.arXiv:1111.0966 [astro-ph.HE].
14.
14. L. Chomiuk, A. M. Soderberg, M. Moe, R. A. Chevalier, M. P. Rupen, C. Badenes, R. Margutti, C. Fransson, W.-f. Fong, and J. A. Dittmann, Astrophys. J. 750, 164 (2012),
http://dx.doi.org/10.1088/0004-637X/750/2/164
14.arXiv:1201.0994 [astro-ph.HE].
15.
15. B. Dilday, D. A. Howell, S. B. Cenko, J. M. Silverman, P. E. Nugent, M. Sullivan, S. Ben-Ami, L. Bildsten, M. Bolte, M. Endl, A. V. Filippenko, O. Gnat, A. Horesh, E. Hsiao, M. M. Kasliwal, D. Kirkman, K. Maguire, G. W. Marcy, K. Moore, Y. Pan, J. T. Parrent, P. Podsiadlowski, R. M. Quimby, A. Sternberg, N. Suzuki, D. R. Tytler, D. Xu, J. S. Bloom, A. Gal-Yam, I. M. Hook, S. R. Kulkarni, N. M. Law, E. O. Ofek, D. Polishook, and D. Poznanski, Science 337, 942 (2012),
http://dx.doi.org/10.1126/science.1219164
15.arXiv:1207.1306 [astro-ph.CO].
16.
16. B. E. Schaefer and A. Pagnotta, Nature 481, 164 (2012).
http://dx.doi.org/10.1038/nature10692
17.
17. Z. I. Edwards, A. Pagnotta, and B. E. Schaefer, ApJL 747, L19 (2012),
http://dx.doi.org/10.1088/2041-8205/747/2/L19
17.arXiv:1201.6377 [astro-ph.SR].
18.
18. P. A. Woudt, and D. Steeghs, in Interacting Binaries: Accretion, Evolution, and Outcomes, American Institute of Physics Conference Series, Vol. 797, edited by L. Burderi, L. A. Antonelli, F. D’Antona, T. di Salvo, G. L. Israel, L. Piersanti, A. Tornambè, and O. Straniero (2005), pp. 647650.
19.
19. P. A. Woudt, D. Steeghs, M. Karovska, B. Warner, P. J. Groot, G. Nelemans, G. H. A. Roelofs, T. R. Marsh, T. Nagayama, D. P. Smits, and T. O’Brien, Astrophys. J. 706, 738 (2009),
http://dx.doi.org/10.1088/0004-637X/706/1/738
19.arXiv:0910.1069 [astro-ph.SR].
20.
20. J. Whelan and I. Iben, Jr., Astrophys. J. 186, 1007 (1973).
http://dx.doi.org/10.1086/152565
21.
21. D. Maoz, F. Mannucci, and G. Nelemans, ArXiv e-prints (2013),
21.arXiv:1312.0628 [astro-ph.CO].
22.
22. M. Y. Fujimoto, Astrophys. J. 257, 752 (1982).
http://dx.doi.org/10.1086/160029
23.
23. M. Y. Fujimoto, Astrophys. J. 257, 767 (1982).
http://dx.doi.org/10.1086/160030
24.
24. P. Kahabka and E. P. J. van den Heuvel, Ann. Rev. Ast. Ap. 35, 69 (1997).
http://dx.doi.org/10.1146/annurev.astro.35.1.69
25.
25. S. Starrfield, C. Iliadis, F. X. Timmes, W. R. Hix, W. D. Arnett, C. Meakin, and W. M. Sparks, Bulletin of the Astronomical Society of India 40, 419 (2012),
25.arXiv:1210.6086 [astro-ph.SR].
26.
26. R. D. Gehrz, J. W. Truran, R. E. Williams, and S. Starrfield, PASP 110, 3 (1998).
http://dx.doi.org/10.1086/316107
27.
27. E. P. J. van den Heuvel, D. Bhattacharya, K. Nomoto, and S. A. Rappaport, A&A 262, 97 (1992).
28.
28. O. Yaron, D. Prialnik, M. M. Shara, and A. Kovetz, Astrophys. J. 623, 398 (2005),
http://dx.doi.org/10.1086/428435
29.
29. S. Starrfield, C. Illiadis, and W. R. Hix, “Classical novae,” in Book Thermonuclear Processes, 2nd ed (Cambridge: University Press, 2008), pp. 77101.
30.
30. K. Lodders, Astrophys. J. 591, 1220 (2003).
http://dx.doi.org/10.1086/375492
31.
31. S. Starrfield, C. Iliadis, W. R. Hix, F. X. Timmes, and W. M. Sparks, Astrophys. J. 692, 1532 (2009),
http://dx.doi.org/10.1088/0004-637X/692/2/1532
32.
32. D. Arnett, C. Meakin, and P. A. Young, Astrophys. J. 710, 1619 (2010),
http://dx.doi.org/10.1088/0004-637X/710/2/1619
32.arXiv:0910.0821 [astro-ph.SR].
33.
33. B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, and F. Timmes, ApJSupp 192, 3 (2011),
http://dx.doi.org/10.1088/0067-0049/192/1/3
33.arXiv:1009.1622 [astro-ph.SR].
34.
34. B. Paxton, M. Cantiello, P. Arras, L. Bildsten, E. F. Brown, A. Dotter, C. Mankovich, M. H. Montgomery, D. Stello, F. X. Timmes, and R. Townsend, ArXiv e-prints (2013),
34.arXiv:1301.0319 [astro-ph.SR].
35.
35. G. S. Kutter and W. M. Sparks, Astrophys. J. 321, 386 (1987).
http://dx.doi.org/10.1086/165637
36.
36. G. S. Kutter and W. M. Sparks, Astrophys. J. 239, 988 (1980).
http://dx.doi.org/10.1086/158187
37.
37. J. MacDonald, Astrophys. J. 305, 251 (1986).
http://dx.doi.org/10.1086/164245
38.
38. M. Schwarzschild and R. Härm, Astrophys. J. 142, 855 (1965).
http://dx.doi.org/10.1086/148358
39.
39. S.-C. Yoon, N. Langer, and M. van der Sluys, A&A 425, 207 (2004),
40.
40. M. Zorotovic, M. R. Schreiber, and B. T. Gänsicke, A&A 536, A42 (2011),
40.arXiv:1108.4600 [astro-ph.SR].
41.
41. J. Echevarría, E. de la Fuente, and R. Costero, AJ 134, 262 (2007),
http://dx.doi.org/10.1086/518562
42.
42. E. M. Sion, P. Godon, J. Myzcka, and W. P. Blair, ApJL 716, L157 (2010),
http://dx.doi.org/10.1088/2041-8205/716/2/L157
42.arXiv:1007.3158 [astro-ph.SR].
43.
43. C. M. Copperwheat, T. R. Marsh, V. S. Dhillon, S. P. Littlefair, R. Hickman, B. T. Gänsicke, and J. Southworth, MNRAS 402, 1824 (2010),
http://dx.doi.org/10.1111/j.1365-2966.2009.16010.x
43.arXiv:0911.1637 [astro-ph.SR].
44.
44. A. W. Shafter, On the masses of white dwarfs in cataclysmic binaries, Ph.D. thesis, California Univ., Los Angeles (1983).
45.
45. M. Gilfanov and Á. Bogdán, Nature 463, 924 (2010),
http://dx.doi.org/10.1038/nature08685
45.arXiv:1002.3359 [astro-ph.CO].
46.
46. J. P. Osborne, K. L. Page, A. P. Beardmore, M. F. Bode, M. R. Goad, T. J. O’Brien, S. Starrfield, T. Rauch, J.-U. Ness, J. Krautter, G. Schwarz, D. N. Burrows, N. Gehrels, J. J. Drake, A. Evans, and S. P. S. Eyres, Astrophys. J. 727, 124 (2011),
http://dx.doi.org/10.1088/0004-637X/727/2/124
46.arXiv:1011.5327 [astro-ph.HE].
47.
47. G. T. Bath and R. P. Harkness, in Classical Novae, edited by M. F. Bode and A. Evans (1989), pp. 6172.
48.
48. J.-U. Ness, S. Starrfield, A. P. Beardmore, M. F. Bode, J. J. Drake, A. Evans, R. D. Gehrz, M. R. Goad, R. Gonzalez-Riestra, P. Hauschildt, J. Krautter, T. J. O’Brien, J. P. Osborne, K. L. Page, R. A. Schönrich, and C. E. Woodward, Astrophys. J. 665, 1334 (2007),
http://dx.doi.org/10.1086/519676
49.
49. N. J. Shaviv, in Classical Nova Explosions, American Institute of Physics Conference Series, Vol. 637, edited by M. Hernanz and J. José (2002), pp. 259265,
50.
50. J. Casanova, J. José, E. García-Berro, A. Calder, and S. N. Shore, A&A 527, A5 (2011),
50.arXiv:1012.3199 [astro-ph.SR].
51.
51. J. Casanova, J. José, E. García-Berro, S. N. Shore, and A. C. Calder, Nature 478, 490 (2011).
http://dx.doi.org/10.1038/nature10520
52.
52. M. M. Shara, T. Mizusawa, P. Wehinger, D. Zurek, C. D. Martin, J. D. Neill, K. Forster, and M. Seibert, Astrophys. J. 758, 121 (2012),
http://dx.doi.org/10.1088/0004-637X/758/2/121
52.arXiv:1208.1280 [astro-ph.SR].
53.
53. M. M. Shara, T. Mizusawa, D. Zurek, C. D. Martin, J. D. Neill, and M. Seibert, Astrophys. J. 756, 107 (2012),
http://dx.doi.org/10.1088/0004-637X/756/2/107
53.arXiv:1205.3531 [astro-ph.SR].
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4866984
Loading
/content/aip/journal/adva/4/4/10.1063/1.4866984
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4866984
2014-02-25
2014-12-18

Abstract

Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted by the WD. One consequence of the WDs accreting material, is the possibility that they are growing in mass and will eventually reach the Chandrasekhar Limit. This evolution could result in a Supernova Ia (SN Ia) explosion and is designated the Single Degenerate Progenitor (SD) scenario. This paper is concerned with the SD scenario for SN Ia progenitors. One problem with the single degenerate scenario is that it is generally assumed that the accreting material mixes with WD core material at some time during the accretion phase of evolution and, since the typical WD has a carbon-oxygen CO core, the mixing results in large amounts of carbon and oxygen being brought up into the accreted layers. The presence of enriched carbon causes enhanced nuclear fusion and a Classical Nova explosion. Both observations and theoretical studies of these explosions imply that more mass is ejected than is accreted. Thus, the WD in a Classical Nova system is losing mass and cannot be a SN Ia progenitor. However, the composition in the nuclear burning region is important and, in new calculations reported here, the consequences to the WD of mixing of accreted material with core material have been investigated so that the material involved in the explosion has only a Solar composition. WDs with a large range in initial masses and mass accretion rates have been evolved. I find that once sufficient material has been accreted, nuclear burning occurs in all evolutionary sequences and continues until a thermonuclear runaway (TNR) occurs and the WD either ejects a small amount of material or its radius grows to about 1012 cm and the evolution is ended. In all cases where mass ejection occurs, the mass of the ejecta is far less than the mass of the accreted material. Therefore, all the WDs are growing in mass. It is also found that the accretion time to explosion can be sufficiently short for a 1.0M WD that recurrent novae can occur on a low mass WD. This mass is lower than typically assumed for the WDs in recurrent nova systems. Finally, the predicted surface temperatures when the WD is near the peak of the explosion imply that only the most massive WDs will be significant X-ray emitters at this time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4866984.html;jsessionid=4ac0e8h01tmoo.x-aip-live-06?itemId=/content/aip/journal/adva/4/4/10.1063/1.4866984&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The accretion of solar material onto white dwarfs: No mixing with core material implies that the mass of the white dwarf is increasing
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4866984
10.1063/1.4866984
SEARCH_EXPAND_ITEM