1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Sensitivity studies for the weak r process: neutron capture rates
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/4/10.1063/1.4867191
1.
1. M. E. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).
http://dx.doi.org/10.1103/RevModPhys.29.547
2.
2. A. G. W. Cameron, Chalk River Rep. CRL-41 (1957).
3.
3. G. Wallerstein et al., Rev. Mod. Phys. 69, 995 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.995
4.
4. F. Käppeler, R. Gallino, S. Bisterzo, and W. Aoki, Rev. Mod. Phys. 83, 157 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.157
5.
5. M. Arnould and S. Goriely, Phys. Rep. 384, 1 (2003).
http://dx.doi.org/10.1016/S0370-1573(03)00242-4
6.
6. F.-K. Thielemann et al., J. Phys.: Conference Series 202, 012006 (2010).
http://dx.doi.org/10.1088/1742-6596/202/1/012006
7.
7. M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97 (2007).
http://dx.doi.org/10.1016/j.physrep.2007.06.002
8.
8. G. J. Wasserburg, M. Busso, and R. Gallino, Astrophys. J. 446, L109 (1996).
http://dx.doi.org/10.1086/310177
9.
9. J. J. Cowan, I. Roederer, C. Sneden, and J. E. Lawler, RR Lyrae Stars, Metal-Poor Stars, and the Galaxy, Carnegie Observatories Astrophysics Series, Vol. 5 (2011).
10.
10. A. Arcones and F. Montes, Astrophys. J. 731, 5 (2011).
http://dx.doi.org/10.1088/0004-637X/731/1/5
11.
11. J. S. Thomas et al., Phys. Rev. C 71, 021302 (2005).
http://dx.doi.org/10.1103/PhysRevC.71.021302
12.
12. J. S. Thomas et al., Phys. Rev. C 76, 044302 (2007).
http://dx.doi.org/10.1103/PhysRevC.76.044302
13.
13. S. D. Pain et al., PoS (NICX) 142 (2008).
14.
14. K. L. Jones et al., Phys. Rev. C 84, 034601 (2011).
http://dx.doi.org/10.1103/PhysRevC.84.034601
15.
15. R. L. Kozub et al., Phys. Rev. Lett. 109, 172501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.172501
16.
16. S. Ahn et al., “Application of accelerators in research and industry: Twenty-Second International Conference,” AIP Conference Proceedings 1525, 541 (2013).
http://dx.doi.org/10.1063/1.4802387
17.
17. B. Manning et al., Proceedings of the Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei (World Scientific, 2013), pp. 570573.
18.
18. J. R. Beene et al., J. Phys. G 38, 024002 (2011).
http://dx.doi.org/10.1088/0954-3899/38/2/024002
19.
19. J. Beun, J. Blackmon, W. R. Hix, G. C. McLaughlin, M. Smith, and R. Surman, J. Phys. G 36, 025201 (2009).
http://dx.doi.org/10.1088/0954-3899/36/2/025201
20.
20. R. Surman, J. Beun, G. C. McLaughlin, and W. R. Hix, Phys. Rev. C 79, 045809 (2009).
http://dx.doi.org/10.1103/PhysRevC.79.045809
21.
21. M. Mumpower, G. C. McLaughlin, and R. Surman, Phys. Rev. C 86, 035803 (2012).
http://dx.doi.org/10.1103/PhysRevC.86.035803
22.
22. S. Brett, I. Bentley, N. Paul, R. Surman, and A. Aprahamian, Eur. Phys. J. A 48, 184 (2012).
http://dx.doi.org/10.1140/epja/i2012-12184-4
23.
23. R. Surman, M. Mumpower, J. Cass, and A. Aprahamian, Proceedings of the Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei (World Scientific, 2013), pp. 538545.
24.
24. T. Rauscher, N. Dauphas, I. Dillmann, C. Fröhlich, Z. Fülöp, and G. Gyürky, Rep. Prog. Phys. 76, 066201 (2013).
http://dx.doi.org/10.1088/0034-4885/76/6/066201
25.
25. M. Pignatari, R. Gallino, M. Heil, M. Wiescher, F. Käppeler, F. Herwig, and S. Bisterzo, Astrophys. J. 710, 1557 (2010).
http://dx.doi.org/10.1088/0004-637X/710/2/1557
26.
26. S. Goriely, Phys. Lett. B 436, 10 (1998).
http://dx.doi.org/10.1016/S0370-2693(98)00907-1
27.
27. R. Surman and J. Engel, Phys. Rev. C 64, 035801 (2001).
http://dx.doi.org/10.1103/PhysRevC.64.035801
28.
28. T. Rauscher, Nucl. Phys. A 758, 655 (2005).
http://dx.doi.org/10.1016/j.nuclphysa.2005.05.160
29.
29. K. Farouqi, K.-L. Kratz, B. Pfeiffer, T. Rauscher, and F.-K. Thielemann, American Institute of Physics Conference Series 819, 419 (2006).
30.
30. A. Arcones and G. Martínez-Pinedo, Phys. Rev. C 83, 045809 (2011).
http://dx.doi.org/10.1103/PhysRevC.83.045809
31.
31. Y.-Z. Qian and S. E. Woosley, Astrophys. J 471, 331 (1996).
http://dx.doi.org/10.1086/177973
32.
32. R. Surman, G. C. McLaughlin, and W. R. Hix, Astrophys. J 643, 1057 (2006).
http://dx.doi.org/10.1086/501116
33.
33. M. Mumpower, G. C. McLaughlin, and R. Surman, Phys. Rev. C 85, 045801 (2012).
http://dx.doi.org/10.1103/PhysRevC.85.045801
34.
34. R. D. Hoffman, S. E. Woosley, G. M. Fuller, and B. S. Meyer, Astrophys. J 460, 478 (1996).
http://dx.doi.org/10.1086/176986
35.
35. C. Sneden, J. J. Cowan, and R. Gallino, Ann. Rev. Astron. Astrophys. 46, 241 (2008).
http://dx.doi.org/10.1146/annurev.astro.46.060407.145207
36.
36. R. Surman, G. C. McLaughlin, M. Ruffert, H.-Th. Janka, and W. R. Hix, Astrophys. J. 679, L117 (2008).
http://dx.doi.org/10.1086/589507
37.
37. R. H. Cyburt et al., Astrophys. J Suppl. 189, 240 (2010).
http://dx.doi.org/10.1088/0067-0049/189/1/240
38.
38. T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).
http://dx.doi.org/10.1006/adnd.2000.0834
39.
39. W. R. Hix and F.-K. Thielemann, J. Comput. Appl. Math. 109, 321 (1999).
http://dx.doi.org/10.1016/S0377-0427(99)00163-6
40.
40. S. Wanajo and H.-Th. Janka, Astrophys. J 746, 180 (2012).
http://dx.doi.org/10.1088/0004-637X/746/2/180
41.
41. M. Mumpower, G. C. McLaughlin, and R. Surman, Astrophys. J 752, 117 (2012).
http://dx.doi.org/10.1088/0004-637X/752/2/117
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4867191
Loading
/content/aip/journal/adva/4/4/10.1063/1.4867191
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4867191
2014-02-26
2014-09-17

Abstract

Rapid neutron capture nucleosynthesis involves thousands of nuclear species far from stability, whose nuclear properties need to be understood in order to accurately predict nucleosynthetic outcomes. Recently sensitivity studies have provided a deeper understanding of how the process proceeds and have identified pieces of nuclear data of interest for further experimental or theoretical study. A key result of these studies has been to point out the importance of individual neutron capture rates in setting the final -process abundance pattern for a ‘main’ ( ∼ 130 peak and above) process. Here we examine neutron capture in the context of a ‘weak’ process that forms primarily the ∼ 80 -process abundance peak. We identify the astrophysical conditions required to produce this peak region through weak -processing and point out the neutron capture rates that most strongly influence the final abundance pattern.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4867191.html;jsessionid=3r0664siuqh8e.x-aip-live-02?itemId=/content/aip/journal/adva/4/4/10.1063/1.4867191&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Sensitivity studies for the weak r process: neutron capture rates
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4867191
10.1063/1.4867191
SEARCH_EXPAND_ITEM