1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Sensitivity studies for the main r process: nuclear masses
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/4/10.1063/1.4867193
1.
1. C. Sneden, J. Cowan, and R. Gallino, Annu. Rev. Astro. Astrophys. 46, 241 (2008).
http://dx.doi.org/10.1146/annurev.astro.46.060407.145207
2.
2. M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97 (2007).
http://dx.doi.org/10.1016/j.physrep.2007.06.002
3.
3. F.-K. Thielemann et al., Prog. Part. Nucl. Phys. 66, 346 (2011).
http://dx.doi.org/10.1016/j.ppnp.2011.01.032
4.
4. K.-L. Kratz, J. Goerres, B. Pfeiffer, and M. Wiescher, Journal of Radioanalytical and Nuclear Chemistry 243, 133 (2000).
http://dx.doi.org/10.1023/A:1006779617136
5.
5. B. S. Meyer, G. J. Mathews, W. M. Howard, S. E. Woosley, and R. D. Hoffman, Astrophys. J. 399, 656 (1992).
http://dx.doi.org/10.1086/171957
6.
6. S. E. Woosley, J. R. Wilson, G. J. Mathews, R. D. Hoffman, and B. S. Meyer, Astrophys. J. 433, 229 (1994).
http://dx.doi.org/10.1086/174638
7.
7. A. Arcones, H.-Th. Janka, and L. Scheck, Astron. & Astrophys. 467, 1227 (2007).
http://dx.doi.org/10.1051/0004-6361:20066983
8.
8. L. Roberts, S. Reddy, and G. Shen, Phys. Rev. C 86, 065803 (2012).
http://dx.doi.org/10.1103/PhysRevC.86.065803
9.
9. C. Freiburghaus, S. Rosswog, and F.-K. Thielemann, Astrophys. J. 525, L121 (1999).
http://dx.doi.org/10.1086/312343
10.
10. S. Goriely, A. Bauswein, and H.-Th. Janka, Astrophys. J. 738, L32 (2011).
http://dx.doi.org/10.1088/2041-8205/738/2/L32
11.
11. O. Korobkin, S. Rosswog, A. Arcones, and C. Winteler, MNRAS 426, 1940 (2012).
http://dx.doi.org/10.1111/j.1365-2966.2012.21859.x
12.
12. R. Surman, G. McLaughlin, and W. Hix, Astrophys. J. 643, 1057 (2006).
http://dx.doi.org/10.1086/501116
13.
13. S. Wanajo and H.-Th. Janka, Astrophys. J. 746, 180 (2012).
http://dx.doi.org/10.1088/0004-637X/746/2/180
14.
14. R. Surman, G. C. McLaughlin, M. Ruffert, H.-Th. Janka, and W. R. Hix, Astrophys. J. 679, L117 (2008).
http://dx.doi.org/10.1086/589507
15.
15. S.-I. Fujimoto, K. Kotake, S. Yamada, M.-A. Hashimoto, and K. Sato, Astrophys. J. 644, 1040 (2006).
http://dx.doi.org/10.1086/503624
16.
16. N. Nishimura et al., Phys. Rev. C 85, 048801 (2012).
http://dx.doi.org/10.1103/PhysRevC.85.048801
17.
17. C. Winteler et al., Astrophys. J. 750, L22 (2012).
http://dx.doi.org/10.1088/2041-8205/750/1/L22
18.
18. P. Moller, J. R. Nix, W. D. Meyers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
http://dx.doi.org/10.1006/adnd.1995.1002
19.
19. G. Audi, F. G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot, and M. MacCormick, Chinese Physics C 36, 1157 (2012).
http://dx.doi.org/10.1088/1674-1137/36/12/001
20.
20. J. Duflo and A. Zuker, Phys. Rev. C 52, R23 (1995).
http://dx.doi.org/10.1103/PhysRevC.52.R23
21.
21. S. Goriely, N. Chamel, and J. Pearson, Phys. Rev. C 82, 035804 (2010).
http://dx.doi.org/10.1103/PhysRevC.82.035804
22.
22. N. Wang and M. Liu, Journal of Physics: Conference Series 420, 012057 (2013).
http://dx.doi.org/10.1088/1742-6596/420/1/012057
23.
23. H. Schatz, Physics Today 61(11), 40 (2008).
http://dx.doi.org/10.1063/1.3027990
24.
24. S. Brett, I. Bentley, N. Paul, R. Surman, and A. Aprahamian, E. Phys. J. A 48, 184 (2012).
http://dx.doi.org/10.1140/epja/i2012-12184-4
25.
25. M. Mumpower et al., in preparation.
26.
26. Y.-Z. Qian, P. Vogel, and G. J. Wasserburg, Astrophys. J. 494, 285 (1998).
http://dx.doi.org/10.1086/305198
27.
27. Y.-Z. Qian and S. Woosley, Astrophys. J. 471, 331 (1996).
http://dx.doi.org/10.1086/177973
28.
28. R. Surman and J. Engel, Phys. Rev. C 64, 035801 (2001).
http://dx.doi.org/10.1103/PhysRevC.64.035801
29.
29. T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).
http://dx.doi.org/10.1006/adnd.2000.0834
30.
30. S. Goriely, S. Hilaire, and A. J. Koning, Astron. Astrophys. 487, 767 (2008).
http://dx.doi.org/10.1051/0004-6361:20078825
31.
31. P. Moller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67, 055802 (2003).
http://dx.doi.org/10.1103/PhysRevC.67.055802
32.
32. O. Tarasov and M. Hausmann, http://groups.nscl.msu.edu/frib/rates/fribrates.html (2012).
33.
33. B. S. Meyer, Phys. Rev. C 89, 231101 (2002).
34.
34. M. Mumpower, G. C. McLaughlin, and R. Surman, Astrophys. J. 752, 117 (2012).
http://dx.doi.org/10.1088/0004-637X/752/2/117
35.
35. R. Surman, J. Beun, G. C. McLaughlin, and W. R. Hix, Phys. Rev. C 79, 045809 (2009).
http://dx.doi.org/10.1103/PhysRevC.79.045809
36.
36. M. R. Mumpower, G. C. McLaughlin, and R. Surman, Phys. Rev. C 85, 045801 (2012).
http://dx.doi.org/10.1103/PhysRevC.85.045801
37.
37. M. Mumpower, G. C. McLaughlin, and R. Surman, Phys. Rev. C 86, 035803 (2012).
http://dx.doi.org/10.1103/PhysRevC.86.035803
38.
38. R. Surman, M. Mumpower, R. Sinclair, K. L. Jones, W. R. Hix, and G. C. McLaughlin, AIP Advances 4, 041008 (2014).
http://dx.doi.org/10.1063/1.4867191
39.
39. R. Surman, M. Mumpower, J. Cass, I. Bentley, A. Aprahamian, and G. C. McLaughlin, Proceedings of the International Nuclear Physics Conference (INPC) (submitted) arXiv:1309.0059 (2013).
40.
40. J. Cass, G. Passucci, R. Surman, and A. Aprahamian, Proceedings of Science NIC-XII 154 (2012).
41.
41. M. Mumpower, J. Cass, G. Passucci, R. Surman, and A. Aprahamian, AIP Advances 4, 041009 (2014).
http://dx.doi.org/10.1063/1.4867192
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4867193
Loading
/content/aip/journal/adva/4/4/10.1063/1.4867193
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4867193
2014-02-26
2014-12-20

Abstract

The site of the rapid neutron capture process ( process) is one of the open challenges in all of physics today. The process is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncertainties associated with astrophysical conditions that are needed to allow an process to occur and a vast lack of knowledge about the properties of nuclei far from stability. One way is to disentangle the nuclear and astrophysical components of the question. On the nuclear physics side, there is great global competition to access and measure the most exotic nuclei that existing facilities can reach, while simultaneously building new, more powerful accelerators to make even more exotic nuclei. On the astrophysics side, various astrophysical scenarios for the production of the heaviest elements have been proposed but open questions remain. This paper reports on a sensitivity study of the process to determine the most crucial nuclear masses to measure using an -process simulation code, several mass models (FRDM, Duflo-Zuker, and HFB-21), and three potential astrophysical scenarios.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4867193.html;jsessionid=49mell9al249s.x-aip-live-02?itemId=/content/aip/journal/adva/4/4/10.1063/1.4867193&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Sensitivity studies for the main r process: nuclear masses
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4867193
10.1063/1.4867193
SEARCH_EXPAND_ITEM