1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Chaos and turbulent nucleosynthesis prior to a supernova explosion
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/4/10.1063/1.4867384
1.
1. M. Schwarzschild, Astrophys. J. 195, 137 (1975).
http://dx.doi.org/10.1086/153313
2.
2. F. Hoyle, Frontiers of Astronomy (Harper & Brothers, New York, 1955).
3.
3. L. G. Henyey, L. Wilets, K. H. Böhm, R. Lelevier, and R. D. Levee, Astrophys. J. 129, 628 (1959).
http://dx.doi.org/10.1086/146661
4.
4. Icko Iben, Jr., Astrophys. J. 141, 993 (1965).
http://dx.doi.org/10.1086/148193
5.
5. Icko Iben, Jr., Stellar Evolution Physics: Vol. 1: Physical Proceesses in Stellar Interiors (Cambridge University Press, 2013).
6.
6. R. Kippenhahn and A. Weigert, Stellar Structure and Evolution (Springer-Verlag, 1990).
7.
7. E. Vitense, Zeits. für Astrophysik 32, 135 (1953).
8.
8. E. Böhm-Vitense, Zeits. für Astrophysik 46, 108 (1958).
9.
9. A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).
http://dx.doi.org/10.1017/S0022112062000518
10.
10. E. N. Lorenz, Journal of Atmospheric Sciences 20, 130 (1963).
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
11.
11. G. Rakavy, G. Shaviv, and Z. Zinamon, Astrophys. J. 150, 131 (1967).
http://dx.doi.org/10.1086/149318
12.
12. W. D. Arnett, Astrophys. J. 176, 681 (1972).
http://dx.doi.org/10.1086/151671
13.
13. W. D. Arnett, Astrophys. J. 218, 815 (1977).
http://dx.doi.org/10.1086/155738
14.
14. P. P. Eggleton, Mon. Notices R.A.S. 156, 361 (1972).
15.
15. T. Weaver, G. Zimmerman, and S. E. Woosley, Astrophys. J. 225, 1021 (1978).
http://dx.doi.org/10.1086/156569
16.
16. N. Langer, M. El Eid, and K. Fricke, Astronomy & Astrophys. 145, 179 (1985).
17.
17. N. Langer, Ann. Rev. Astron. Astrophys. 50, 107 (2012).
http://dx.doi.org/10.1146/annurev-astro-081811-125534
18.
18. B. J. Daly and F. H. Harlow, Physics of Fluids 13, 2634 (1970).
http://dx.doi.org/10.1063/1.1692845
19.
19. S. I. Braginskii, Soviet Physics JETP 6, 358 (1958).
20.
20. L. Spitzer, Physics of Fully Ionized Gases, Second Edition (Interscience Publishers, NY, 1962).
21.
21. C. J. Hansen and S. D. Kawaler, Stellar Interiors (Springer-Verlag, 1994).
22.
22. C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar Interiors, 2nd ed. (Springer-Verlag, 2004).
23.
23. S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, GB, 2000).
24.
24. J. Boris, Implicit Large Eddy Simulations, edited by F. F. Grinstein, L. G. Margolin, and W. J. Rider (Cambridge University Press, 2007).
25.
25. M. Viallet, C. Meakin, D. Arnett, and M. Mocak, Astrophys. J. 769, 1 (2013).
http://dx.doi.org/10.1088/0004-637X/769/1/1
26.
26. J. von Neumann, in Collected Works, Volume VI, 1963 (Pergamon Press, Oxford, 1948), p. 467469.
27.
27. G. Bazàn and D. Arnett, Astrophys. J. 433, L41 (1994).
http://dx.doi.org/10.1086/187543
28.
28. G. Bazàn and D. Arnett, Science 276, 1359 (1997).
http://dx.doi.org/10.1126/science.276.5317.1359
29.
29. G. Bazàn and D. Arnett, Nucl. Phys. A 621, 607 (1997b).
http://dx.doi.org/10.1016/S0375-9474(97)00313-8
30.
30. G. Bazàn and D. Arnett, Astrophys. J. 494, 316 (1998).
31.
31. C. Meakin and D. Arnett, Astrophys. J. 667, 448 (2007b).
http://dx.doi.org/10.1086/520318
32.
32. D. Arnett, C. Meakin, and P. A. Young, Astrophys. J. 690, 1715 (2009).
http://dx.doi.org/10.1088/0004-637X/690/2/1715
33.
33. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959).
34.
34. H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge MA, 1972).
35.
35. M. Mocák, C. Meakin, M. Viallet, and D. Arnett, arXiv:1401.5176 (2014).
36.
36. D. Arnett and C. Meakin, Astrophys. J. 741, 33 (2011b).
http://dx.doi.org/10.1088/0004-637X/741/1/33
37.
37. U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995).
38.
38. D. Gough, Astrophys. J. 214, 196 (1976).
http://dx.doi.org/10.1086/155244
39.
39. R. Stellingwerf, Astrophys. J. 284, 712 (1984).
http://dx.doi.org/10.1086/162454
40.
40. J. L. Lumley and H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience Publishers, New York, 1964).
41.
41. J. L. Lumley, O. Zeman, and J. Siess, J. Fluid Mech. 84, 581 (1978).
http://dx.doi.org/10.1017/S0022112078000348
42.
42. V. M. Canuto, Astronomy & Astrophys. 528, A76 (2011).
http://dx.doi.org/10.1051/0004-6361/201014447
43.
43. N. Smith and D. Arnett, arXiv:1307.5035S, and Astrophys. J., in press (2014).
44.
44. C. Aerts, J. Christensen-Dalsgaard, and D. W. Kurtz, Asteroseismology (Springer, Dordrecht, 2010).
45.
45. C. Aerts, in Setting a New Standard in the Analysis of Binary Stars, edited by K. Pavlovski, A. Tkachenko, and G. Torres, EAS Publications Series, and arXiv:1311.6242v1 (2014).
46.
46. G. Michaud, O. Richard, J. Richer, and D. A. VandenBerg, Astrophys. J. 606, 452 (2004).
http://dx.doi.org/10.1086/383001
47.
47. A. A. Thoul, J. N. Bahcall, and A. Loeb, Astrophys. J. 421, 828 (1994).
http://dx.doi.org/10.1086/173695
48.
48. D. Arnett, Supernovae and Nucleosynthesis (Princeton University Press, Princeton, NJ, 1996).
49.
49. W. Unno, Y. Osaki, H. Ando, H. Saio, and H. Shibahashi, Nonradial Oscillations of Stars, 2nd ed. (University of Tokyo Press, Tokyo, 1989).
50.
50. P. R. Woodward, F. Herwig, and P-H. Lin, Astrophys. J. (submitted), arXiv:1307.3821v1 (2014).
51.
51. F. Herwig, Astronomy & Astrophys. 360, 952 (2000).
52.
52. R. J. Stancliffe, D. S. P. Dearborn, J. Latttanzio, S. A. Heap, and S. W. Campbell, Astrophys. J. 742, 121 (2011).
http://dx.doi.org/10.1088/0004-637X/742/2/121
53.
53. M. Moćak, L. Siess, and E. Müller, Astronomy & Astrophys. 533, A53 (2011).
http://dx.doi.org/10.1051/0004-6361/201116940
54.
54. E. Quataert and J. Shiode, Mon. Notices R.A.S. 423, L92 (2012).
55.
55. J. H. Shiode and E. Quataert, arXiv:1308.5878v1,; Astrophys. J., submitted (2013).
56.
56. C. Meakin and D. Arnett, Astrophys. J. 733, 78 (2011).
http://dx.doi.org/10.1088/0004-637X/733/2/78
57.
57. C. Meakin, Ph. D. Dissertation, Steward Observatory, University of Arizona, Tucson AZ (2006).
58.
58. D. Arnett and C. Meakin, Astrophys. J. 733, 78 (2011a)
http://dx.doi.org/10.1088/0004-637X/733/2/78
59.
59. J. W. Murphy, A. Burrows, and A. Heger, Astrophys. J. 615, 460 (2004).
http://dx.doi.org/10.1086/423983
60.
60. S. Couch and C. Ott, Astrophys. J. Letters (2013).
61.
61. S. E. Woosley and A. Heger, Phys. Rep. 442, 269 (2007).
http://dx.doi.org/10.1016/j.physrep.2007.02.009
62.
62. J. W. Murphy and C. Meakin, Astrophys. J. 742, 74 (2011).
http://dx.doi.org/10.1088/0004-637X/742/2/74
63.
63. S. Amari, E. Zinner, and R. Gallino, 43rd Lunar and Planetary Science Conf. 43, 1031 (2012).
64.
64. K. J. Kelly, C. Iliadis, L. Downen, J. Josè, and A. Champagne, arXiv:1311.2813v1 (2013).
65.
65. A. Maeder and G. Meynet, Ann. Rev. Astron. Astrophys. 38, 143 (2000).
http://dx.doi.org/10.1146/annurev.astro.38.1.143
66.
66. J. H. Groh, G. Meynet, C. Georgy, and S. Ekström, Astronomy & Astrophys. 558, 131 (2013).
http://dx.doi.org/10.1051/0004-6361/201321906
67.
67. M. S. Miesch, Living Reviews in Solar Physics 2, 1 (2005).
http://dx.doi.org/10.12942/lrsp-2005-1
68.
68. P. Goldreich, N. Murray, and P. Kumar, Astrophys. J. 424, 466 (1994).
http://dx.doi.org/10.1086/173904
69.
69. S. A. Balbus, Mon. Notices R.A.S. 395, 2056 (2009).
http://dx.doi.org/10.1111/j.1365-2966.2009.14469.x
70.
70. C. Gottbrath, J. Bailin, C. Meakin, T. Thompson, and J. J. Charfman, arXiv:astro-ph/9912202 (1999).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4867384
Loading
/content/aip/journal/adva/4/4/10.1063/1.4867384
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4867384
2014-03-18
2014-10-22

Abstract

Three-dimensional (3D), time dependent numerical simulations of flow of matter in stars, now have sufficient resolution to be fully turbulent. The late stages of the evolution of massive stars, leading up to core collapse to a neutron star (or black hole), and often to supernova explosion and nucleosynthesis, are strongly convective because of vigorous neutrino cooling and nuclear heating. Unlike models based on current stellar evolutionary practice, these simulations show a chaotic dynamics characteristic of highly turbulent flow. Theoretical analysis of this flow, both in the Reynolds-averaged Navier-Stokes (RANS) framework and by simple dynamic models, show an encouraging consistency with the numerical results. It may now be possible to develop physically realistic and robust procedures for convection and mixing which (unlike 3D numerical simulation) may be applied throughout the long life times of stars. In addition, a new picture of the presupernova stages is emerging which is more dynamic and interesting (i.e., predictive of new and newly observed phenomena) than our previous one.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4867384.html;jsessionid=16d73bw45s03t.x-aip-live-02?itemId=/content/aip/journal/adva/4/4/10.1063/1.4867384&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Chaos and turbulent nucleosynthesis prior to a supernova explosion
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4867384
10.1063/1.4867384
SEARCH_EXPAND_ITEM