Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/4/10.1063/1.4868239
1.
1. W. A. Fowler, Quart. J. Roy. Astron. Soc. 15, 82 (1974).
2.
2. T. Rauscher, Int. J. Mod. Phys. E 20, 1071 (2011).
http://dx.doi.org/10.1142/S021830131101840X
3.
3. J. A. Holmes, S. E. Woosley, W. A. Fowler, and B. A. Zimmerman, At. Data Nucl. Data Tables 18, 305 (1976).
http://dx.doi.org/10.1016/0092-640X(76)90011-5
4.
4. T. Rauscher, Phys. Rev. C 81, 045807 (2010).
http://dx.doi.org/10.1103/PhysRevC.81.045807
5.
5. G. J. Mathews, A. Mengoni, F.-K. Thielemann, and W. A. Fowler, Astrophys. J. 270, 740 (1983).
http://dx.doi.org/10.1086/161164
6.
6. T. Rauscher, R. Bieber, H. Oberhummer, K.-L. Kratz, J. Dobaczewski, P. Möller, and M. M. Sharma, Phys. Rev. C 57, 2031 (1998).
http://dx.doi.org/10.1103/PhysRevC.57.2031
7.
7. A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).
http://dx.doi.org/10.1103/RevModPhys.30.257
8.
8. C. Iliadis, Nuclear Physics of Stars (Wiley-VCH Verlag, Weinheim, 2007).
9.
9. T. Rauscher, F.-K. Thielemann, J. Görres, and M. Wiescher, Nucl. Phys. A675, 695 (2000).
http://dx.doi.org/10.1016/S0375-9474(00)00182-2
10.
10. W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
http://dx.doi.org/10.1103/PhysRev.87.366
11.
11. T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).
http://dx.doi.org/10.1006/adnd.2000.0834
12.
12. T. Rauscher, F.-K. Thielemann, and K.-L. Kratz, Phys. Rev. C 56, 1613 (1997).
http://dx.doi.org/10.1103/PhysRevC.56.1613
13.
13. T. Rauscher, Astrophys. J. Lett. 755, L10 (2012) (Note: although this applies the derived formalism to s-process neutron capture, the same considerations with respect to the g.s. contribution to the stellar rate and resulting rate uncertainties can be applied to any other reaction, including reactions with charged particles and stellar photodisintegration reactions.)
http://dx.doi.org/10.1088/2041-8205/755/1/L10
14.
14. T. Rauscher, P. Mohr, I. Dillmann, and R. Plag, Astrophys. J. 738, 143 (2011).
http://dx.doi.org/10.1088/0004-637X/738/2/143
15.
15. T. Nakamura et al., Phys. Rev. C 79, 035805 (2009).
http://dx.doi.org/10.1103/PhysRevC.79.035805
16.
16. T. Rauscher, Astrophys. J. Suppl. 201, 26 (2012).
http://dx.doi.org/10.1088/0067-0049/201/2/26
17.
17. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).
http://dx.doi.org/10.1103/RevModPhys.29.547
18.
18. A. G. W. Cameron, Pub. Astron. Soc. Pac. 69, 201 (1957).
http://dx.doi.org/10.1086/127051
19.
19. F. Käppeler, R. Gallino, S. Bisterzo, and W. Aoki, Rev. Mod. Phys. 83, 157 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.157
20.
20. R. Gallino, C. Arlandini, M. Busso, M. Lugaro, C. Travaglio, O. Straniero, A. Chieffi, and M. Limongi, Astrophys. J. 497, 388 (1998).
http://dx.doi.org/10.1086/305437
21.
21. C. Arlandini, F. Käppeler, K. Wisshak, R. Gallino, M. Lugaro, M. Busso, and O. Straniero, Astrophys. J. 525, 886 (1999).
http://dx.doi.org/10.1086/307938
22.
22. A. I. Boothroyd, Science 314, 1690 (2006).
http://dx.doi.org/10.1126/science.1136842
23.
23. C. Travaglio, D. Galli, and A. Burkert, Astrophys. J. 549, 346 (2001).
http://dx.doi.org/10.1086/319087
24.
24. T. Rauscher, A. Heger, R. D. Hoffman, and S. E. Woosley, Astrophys. J. 576, 323 (2002).
http://dx.doi.org/10.1086/341728
25.
25. Z. Y. Bao, H. Beer, F. Käppeler, F. Voss, K. Wisshak, and T. Rauscher, At. Data Nucl. Data Tables 76, 70 (2000).
http://dx.doi.org/10.1006/adnd.2000.0838
26.
26. I. Dillmann, M. Heil, F. Käppeler, R. Plag, T. Rauscher, and F.-K. Thielemann, AIP Conf. Proc. 819, 123 (2006); online at http://www.kadonis.org.
http://dx.doi.org/10.1063/1.2187846
27.
27. M. Wiescher, F. Käppeler, and K. Langanke, Ann. Rev. Astron. Astrophys. 50, 165 (2012).
http://dx.doi.org/10.1146/annurev-astro-081811-125543
28.
28. K. Sonnabend, P. Mohr, K. Vogt, A. Zilges, A. Mengoni, T. Rauscher, H. Beer, F. Käppeler, and R. Gallino, Astrophys. J. 583, 506 (2003).
http://dx.doi.org/10.1086/345086
29.
29. P. Mohr et al., Phys. Rev. C 69, 032801 (2004).
http://dx.doi.org/10.1103/PhysRevC.69.032801
30.
30. T. Rauscher, Phys. Rev. C 78, 032801(R) (2008).
http://dx.doi.org/10.1103/PhysRevC.78.032801
31.
31. S. Bisterzo and R. Gallino, private communication.
32.
32. B. S. Meyer, Annu. Rev. Astron. Astrophys. 32, 153 (1994).
http://dx.doi.org/10.1146/annurev.aa.32.090194.001101
33.
33. G. Wallerstein et al., Rev. Mod. Phys. 69, 995 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.995
34.
34. J. J. Cowan, F.-K. Thielemann, and J. W. Truran, “The r-process and nucleochronology,” Phys. Rep. 208, 267 (1991).
http://dx.doi.org/10.1016/0370-1573(91)90070-3
35.
35. M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97 (2007).
http://dx.doi.org/10.1016/j.physrep.2007.06.002
36.
36. C. Freiburghaus, F. Rembges, T. Rauscher, E. Kolbe, F.-K. Thielemann, K.-L. Kratz, B. Pfeiffer, and J. J. Cowan, Astrophys. J. 516, 381 (1999).
http://dx.doi.org/10.1086/307072
37.
37. T. Rauscher, Nucl. Phys. A758, 655c (2005).
http://dx.doi.org/10.1016/j.nuclphysa.2005.05.160
38.
38. F.-K. Thielemann et al., Prog. Part. Nucl. Phys. 66, 346 (2011).
http://dx.doi.org/10.1016/j.ppnp.2011.01.032
39.
39. K. Farouqi, K.-L. Kratz, B. Pfeiffer, T. Rauscher, F.-K. Thielemann, and J. W. Truran, Astrophys. J. 712, 1359 (2010).
http://dx.doi.org/10.1088/0004-637X/712/2/1359
40.
40. A. Arcones and F.-K. Thielemann, J. Phys. G 40, 013201 (2013).
http://dx.doi.org/10.1088/0954-3899/40/1/013201
41.
41. T. A. Thompson, A. Burrows, and B. S. Meyer, Astrophys. J. 562, 887 (2001).
http://dx.doi.org/10.1086/323861
42.
42. S. Wanajo, Astrophys. J. 647, 1323 (2006).
http://dx.doi.org/10.1086/505483
43.
43. A. Arcones, H.-Th. Janka, and L. Scheck, Astron. Astrophys. 467, 1227 (2007).
http://dx.doi.org/10.1051/0004-6361:20066983
44.
44. T. Fischer et al., Astrophys. J. Suppl. 194, 39 (2011).
http://dx.doi.org/10.1088/0067-0049/194/2/39
45.
45. N. Nishimura et al., Astrophys. J. 758, 9 (2012).
http://dx.doi.org/10.1088/0004-637X/758/1/9
46.
46. C. Freiburghaus, S. Rosswog, and F.-K. Thielemann, Astrophys. J. Lett. 525, L121 (1999).
http://dx.doi.org/10.1086/312343
47.
47. C. Travaglio, R. Gallino, E. Arnone, J. J. Cowan, F. Jordan, and C. Sneden, Astrophys. J. 601, 864 (2004).
http://dx.doi.org/10.1086/380507
48.
48. C. Sneden, J. J. Cowan, and R. Gallino, Annu. Rev. Astron. Astrophys. 46, 241 (2008).
http://dx.doi.org/10.1146/annurev.astro.46.060407.145207
49.
49. J. J. Cowan and C. Sneden, Nature 440, 1151 (2006).
http://dx.doi.org/10.1038/nature04807
50.
50. S. Honda, W. Aoki, Y. Ishimaru, and S. Wanajo, Astrophys. J. 643, 1180 (2006).
http://dx.doi.org/10.1086/503195
51.
51. Y.-Z. Qian and G. J. Wasserburg, Phys. Rep. 442, 237 (2007).
http://dx.doi.org/10.1016/j.physrep.2007.02.006
52.
52. S.-I. Fujimoto, N. Nishimura, and M. Hashimoto, Astrophys. J. 680, 1350 (2008).
http://dx.doi.org/10.1086/529416
53.
53. C. Winteler et al., Astrophys. J. Lett. 750, L22 (2012).
http://dx.doi.org/10.1088/2041-8205/750/1/L22
54.
54. S. Wanajo, Astrophys. J. Lett. 666, L77 (2007).
http://dx.doi.org/10.1086/521724
55.
55. R. Surman, J. Engel, J. Bennett, and B. S. Meyer, Phys. Rev. Lett. 79, 1809 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1809
56.
56. M. Mumpower, G. McLaughlin, and R. Surman, Phys. Rev. C 85, 045801 (2012).
http://dx.doi.org/10.1103/PhysRevC.85.045801
57.
57. S. Goriely et al., Phys. Rev. Lett. 111, 242502 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.242502
58.
58. S. Goriely, Phys. Lett. B 436, 10 (1998).
http://dx.doi.org/10.1016/S0370-2693(98)00907-1
59.
59. T. Rauscher, N. Dauphas, I. Dillmann, C. Fröhlich, Zs. Fülöp, and Gy. Gyürky, Rep. Prog. Phys. 76, 066201 (2013).
http://dx.doi.org/10.1088/0034-4885/76/6/066201
60.
60. M. Arnould and S. Goriely, Phys. Rep. 384, 1 (2003).
http://dx.doi.org/10.1016/S0370-1573(03)00242-4
61.
61. S. E. Woosley and W. M. Howard, Astrophys. J. Suppl. 36, 285 (1978).
http://dx.doi.org/10.1086/190501
62.
62. M. Rayet, M. Arnould, M. Hashimoto, N. Prantzos, and K. Nomoto, Astron. Astrophys. 298, 517 (1995).
63.
63. W. M. Howard, B. S. Meyer, and S. E. Woosley, Astrophys. J. Lett. 373, L5 (1991).
http://dx.doi.org/10.1086/186038
64.
64. K. Iwamoto, F. Brachwitz, K. Nomoto, N. Kishimoto, H. Umeda, R. W. Hix, and F.-K. Thielemann, Astrophys. J. Suppl. 125, 439 (1999).
http://dx.doi.org/10.1086/313278
65.
65. C. Travaglio, F. K. Röpke, R. Gallino, and W. Hillebrandt, Astrophys. J. 739, 93 (2011).
http://dx.doi.org/10.1088/0004-637X/739/2/93
66.
66. W. Rapp, J. Görres, M. Wiescher, H. Schatz, and F. Käppeler, Astrophys. J. 653, 474 (2006).
http://dx.doi.org/10.1086/508402
67.
67. T. Rauscher, Phys. Rev. C 73, 015804 (2006).
http://dx.doi.org/10.1103/PhysRevC.73.015804
68.
68. E. Somorjai et al., Astron. Astrophys. 333, 1112 (1998).
69.
69. Yu. M. Gledenov, P. E. Koehler, J. Andrzejewski, K. H. Guber, and T. Rauscher, Phys. Rev. C 62, 042801 (2000).
http://dx.doi.org/10.1103/PhysRevC.62.042801
70.
70. Gy. Gyürky et al., Phys. Rev. C 74, 025805 (2006).
http://dx.doi.org/10.1103/PhysRevC.74.025805
71.
71. S. E. Woosley and W. M. Howard, Astrophys. J. Lett. 354, L21 (1990).
http://dx.doi.org/10.1086/185713
72.
72. T. Rauscher, F.-K. Thielemann, and H. Oberhummer, Astrophys. J. Lett. 451, L37 (1995).
http://dx.doi.org/10.1086/309672
73.
73. T. Rauscher, Phys. Rev. Lett. 111, 061104 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.061104
74.
74. T. Rauscher, G. G. Kiss, Gy. Gyürky, A. Simon, Zs. Fülöp, and E. Somorjai, Phys. Rev. C 80, 035801 (2009).
http://dx.doi.org/10.1103/PhysRevC.80.035801
75.
75. T. Rauscher, Phys. Rev. C 88, 035803 (2013).
http://dx.doi.org/10.1103/PhysRevC.88.035803
76.
76. P. Mohr, T. Rauscher, K. Sonnabend, K. Vogt, and A. Zilges, Nucl. Phys. A718, 243 (2003).
http://dx.doi.org/10.1016/S0375-9474(03)00721-8
77.
77. T. Rauscher, J. Phys.: Conf. Ser. 420, 012138 (2013).
http://dx.doi.org/10.1088/1742-6596/420/1/012138
78.
78. P. Mohr, K. Vogt, M. Babilon, J. Enders, T. Hartmann, C. Hutter, T. Rauscher, S. Volz, and A. Zilges, Phys. Lett. B 488, 127 (2000).
http://dx.doi.org/10.1016/S0370-2693(00)00862-5
79.
79. H. Utsonomiya et al., Phys. Rev. C 88, 015805 (2013).
http://dx.doi.org/10.1103/PhysRevC.88.015805
80.
80. M. Mosconi, M. Heil, F. Käppeler, R. Plag, and A. Mengoni, Phys. Rev. C 82, 015803 (2010).
http://dx.doi.org/10.1103/PhysRevC.82.015803
81.
81. H. Schatz et al., Phys. Rep. 294, 167 (1998).
http://dx.doi.org/10.1016/S0370-1573(97)00048-3
82.
82. H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3471
83.
83. S. E. Woosley et al., Astrophys. J. Suppl. 151, 75 (2004).
http://dx.doi.org/10.1086/381533
84.
84. H. Schatz, this volume.
85.
85. C. Fröhlich, G. Martínez-Pinedo, M. Liebendörfer, F.-K. Thielemann, E. Bravo, W. R. Hix, K. Langanke, and N. T. Zinner, Phys. Rev. Lett. 96, 142502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.142502
86.
86. C. Fröhlich et al., Astrophys. J. 637, 415 (2006).
http://dx.doi.org/10.1086/498224
87.
87. J. Pruet, R. D. Hoffman, S. E. Woosley, H.-Th. Janka, and R. Buras, Astrophys. J. 644, 1028 (2006).
http://dx.doi.org/10.1086/503891
88.
88. C. Fröhlich, T. Rauscher, X. Tang, and J. W. Truran, Phys. Rev. C, in preparation (2014).
89.
89. T. Rauscher and C. Fröhlich, AIP Conf. Proc. 1484, 73 (2012).
http://dx.doi.org/10.1063/1.4763376
90.
90. S. Wanajo, H.-Th. Janka, and S. Kubono, Astrophys. J. 729, 46 (2011).
http://dx.doi.org/10.1088/0004-637X/729/1/46
91.
91. G. Martínez-Pinedo, T. Fischer, A. Lohs, and L. Huther, Phys. Rev. Lett. 109, 251104 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.251104
92.
92. L. F. Roberts, Astrophys. J. 755, 126 (2012).
http://dx.doi.org/10.1088/0004-637X/755/2/126
93.
93. L. F. Roberts, S. Reddy, and G. Shen, Phys. Rev. C 86, 065803 (2012).
http://dx.doi.org/10.1103/PhysRevC.86.065803
94.
94. C. Fröhlich and T. Rauscher, AIP Conf. Proc. 1484, 232 (2012).
http://dx.doi.org/10.1063/1.4763400
95.
95. X. L. Tu et al., Phys. Rev. Lett. 106, 112501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.112501
96.
96. A. Arcones, C. Fröhlich, and G. Martínez-Pinedo, Astrophys. J. 750, 18 (2012).
http://dx.doi.org/10.1088/0004-637X/750/1/18
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4868239
Loading
/content/aip/journal/adva/4/4/10.1063/1.4868239
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4868239
2014-03-10
2016-12-09

Abstract

Nucleosynthesis beyond Fe poses additional challenges not encountered when studying astrophysical processes involving light nuclei. Astrophysical sites and conditions are not well known for some of the processes involved. On the nuclear physics side, different approaches are required, both in theory and experiment. The main differences and most important considerations are presented for a selection of nucleosynthesis processes and reactions, specifically the -, -, γ-, and ν-processes. Among the discussed issues are uncertainties in sites and production conditions, the difference between laboratory and stellar rates, reaction mechanisms, important transitions, thermal population of excited states, and uncertainty estimates for stellar rates. The utility and limitations of indirect experimental approaches are also addressed. The presentation should not be viewed as confining the discussed problems to the specific processes. The intention is to generally introduce the concepts and possible pitfalls along with some examples. Similar problems may apply to further astrophysical processes involving nuclei from the Fe region upward and/or at high plasma temperatures. The framework and strategies presented here are intended to aid the conception of future experimental and theoretical approaches.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4868239.html;jsessionid=ztSw3pCsg-Uk1_VInpOn2luT.x-aip-live-03?itemId=/content/aip/journal/adva/4/4/10.1063/1.4868239&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/4/10.1063/1.4868239&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/4/10.1063/1.4868239'
Right1,Right2,Right3,