Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Preibisch and H. Zinnecker, “The History of Low-Mass Star Formation in the Upper Scorpius OB Association,” AJ 117, 2381 (1999).
2. J. P. Phillips, G. Ramos-Larios, and J. A. Perez-Grana, “Wind-swept clouds and possible triggered star formation associated with the supernova remnant G357.7+0.3,” MNRAS 397, 1215 (2009), arXiv:0909.2065.
3. E. Cappellaro, and M. Turatto, “Supernova Types and Rates,” in The Influence of Binaries on Stellar Population Studies, Astrophysics and Space Science Library, Vol. 264, edited by D. Vanbeveren (2001) p. 199, arXiv:astro-ph/0012455.
4. A. V. Filippenko, “Optical Spectra of Supernovae,” ARA&A 35, 309 (1997).
5. K. Nomoto, F.-K. Thielemann, and K. Yokoi, “Accreting white dwarf models of Type I supernovae. III - Carbon deflagration supernovae,” ApJ 286, 644 (1984).
6. W. Hillebrandt and J. C. Niemeyer, “Type IA Supernova Explosion Models,” ARA&A 38, 191 (2000), arXiv:astro-ph/0006305.
7. A. M. Khokhlov, “Delayed detonation model for type IA supernovae,” A&A 245, 114 (1991).
8. T. Plewa, A. C. Calder, and D. Q. Lamb, “Type Ia Supernova Explosion: Gravitationally Confined Detonation,” ApJ 612, L37 (2004), arXiv:astro-ph/0405163.
9. I. Iben, Jr. and A. Renzini, “Asymptotic giant branch evolution and beyond,” ARA&A 21, 271 (1983).
10. A. Bressan, F. Fagotto, G. Bertelli, and C. Chiosi, “Evolutionary sequences of stellar models with new radiative opacities. II - Z = 0.02,” A&AS 100, 647 (1993).
11. S. E. Woosley, A. Heger, and T. A. Weaver, “The evolution and explosion of massive stars,” Rev. Mod. Phys. 74, 1015 (2002).
12. A. I. MacFadyen, S. E. Woosley, and A. Heger, “Supernovae, Jets, and Collapsars,” ApJ 550, 410 (2001).
13. C. Ritossa, E. García-Berro, and I. Iben, Jr., “On the Evolution of Stars that Form Electron-degenerate Cores Processed by Carbon Burning. V. Shell Convection Sustained by Helium Burning, Transient Neon Burning, Dredge-out, URCA Cooling, and Other Properties of an 11 Msolar Population I Model Star,” ApJ 515, 381 (1999).
14. I. Iben, Jr., C. Ritossa, and E. García-Berro, “On the Evolution of Stars That Form Electron-degenerate Cores Processed by Carbon Burning. IV. Outward Mixing during the Second Dredge-up Phase and Other Properties of a 10.5 Msun Model Star,” ApJ 489, 772 (1997).
15. S. Miyaji and K. Nomoto, “On the collapse of 8-10 solar mass stars due to electron capture,” ApJ 318, 307 (1987).
16. A. Burrows and J. M. Lattimer, “The prompt mechanism of Type II supernovae,” ApJ 299, L19 (1985).
17. J. R. Wilson, “Supernovae and Post–Collapse Behavior,” in Numerical Astrophysics, edited by J. M. Centrella, J. M. LeBlanc, and R. L. Bowers (Jones and Bartlett, Boston, 1985) pp. 422434.
18. H. A. Bethe and J. R. Wilson, “Revival of a Stalled Supernova Shock By Neutrino Heating,” ApJ 295, 14 (1985).
19. A. Burrows and J. Goshy, “A Theory of Supernova Explosions,” ApJ 416, L75 (1993).
20. H.-T. Janka and E. Müller, “Neutrino Heating, Coonvection, and the Mechanism of Type–II Supernova Explosions,” A&A 306, 167 (1996).
21. A. Mezzacappa, A. C. Calder, S. W. Bruenn, J. M. Blondin, M. W. Guidry, M. R. Strayer, and A. S. Umar, “An Investigation of Neutrino–Driven Convection and the Core Collapse Supernova Mechanism Using Multigroup Neutrino Transport,” ApJ 495, 911 (1998).
22. H.-T. Janka, “Conditions for shock revival by neutrino heating in core-collapse supernovae,” A&A 368, 527 (2001).
23. O. E. B. Messer, A. Mezzacappa, S. W. Bruenn, and M. W. Guidry, “A Comparison of Boltzmann and Multigroup Flux-limited Diffusion Neutrino Transport during the Postbounce Shock Reheating Phase in Core-Collapse Supernovae,” ApJ 507, 353 (1998).
24. A. Mezzacappa, M. Liebendörfer, O. E. Messer, W. R. Hix, F.-K. Thielemann, and S. W. Bruenn, “Simulation of the Spherically Symmetric Stellar Core Collapse, Bounce, and Postbounce Evolution of a Star of 13 Solar Masses with Boltzmann Neutrino Transport, and Its Implications for the Supernova Mechanism,” Phys. Rev. Lett. 86, 1935 (2001), arXiv:astro-ph/0005366.
25. S. A. Colgate and R. H. White, “The Hydrodynamic Behavior of Supernovae Explosions,” ApJ 143, 626 (1966).
26. E. Baron, J. Cooperstein, and S. Kahana, “Type-II supernovae in 12-solar-mass and 15-solar-mass stars The equation of state and general relativity,” Phys. Rev. Lett. 55, 126 (1985).
27. K. A. van Riper and J. M. Lattimer, “Stellar core collapse. I - Infall epoch,” ApJ 249, 270 (1981).
28. J. Cooperstein, L. J. van den Horn, and E. A. Baron, “Neutrino flows in collapsing stars - A two-fluid model,” ApJ 309, 653 (1986).
29. W. Hillebrandt, K. Nomoto, and R. Wolff, A&A 133, 175 (1984).
30. J. R. Wilson, “A Numerical Study of Gravitational Stellar Collapse,” ApJ 163, 209 (1971).
31. S. Yamada, H.-T. Janka, and H. Suzuki, “Neutrino transport in type II supernovae: Boltzmann solver vs. Monte Carlo method,” A&A 344, 533 (1999).
32. T. A. Thompson, A. Burrows, and P. A. Pinto, “Shock Breakout in Core-Collapse Supernovae and Its Neutrino Signature,” ApJ 592, 434 (2003).
33. A. Mezzacappa and S. W. Bruenn, “A Numerical Method for Solving the Neutrino Boltzmann Equation Coupled to Spherically Symmetric Stellar Core Collapse,” ApJ 405, 669 (1993).
34. A. Mezzacappa and O. E. B. Messer, “Neutrino Transport in Core Collapse Supernovae,” J. Comp. Appl. Math 109, 281 (1999).
35. M. Liebendörfer, O. E. B. Messer, A. Mezzacappa, S. W. Bruenn, C. Y. Cardall, and F.-K. Thielemann, “A Finite Difference Representation of Neutrino Radiation Hydrodynamics in Spherically Symmetric General Relativistic Spacetime,” ApJS 150, 263 (2004).
36. S. W. Bruenn, “Stellar core collapse - Numerical model and infall epoch,” ApJS 58, 771 (1985).
37. J. R. Wilson and R. W. Mayle, “Report on the Progress of Supernova Research by the Livermore Group,” Phys. Rep. 227, 97 (1993).
38. S. W. Bruenn, K. R. De Nisco, and A. Mezzacappa, “General Relativistic Effects in the Core Collapse Supernova Mechanism,” ApJ 560, 326 (2001).
39. M. Liebendörfer, A. Mezzacappa, F.-K. Thielemann, O. E. B. Messer, W. R. Hix, and S. W. Bruenn, “Probing the gravitational well: No supernova explosion in spherical symmetry with general relativistic Boltzmann neutrino transport,” Phys. Rev. D 63, 103004 (2001).
40. M. Rampp and H.-T. Janka, “Radiation hydrodynamics with neutrinos. Variable Eddington factor method for core-collapse supernova simulations,” A&A 396, 361 (2002).
41. R. Buras, M. Rampp, H.-T. Janka, and K. Kifonidis, “Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M star,” A&A 447, 1049 (2006), arXiv:astro-ph/0507135.
42. S. W. Bruenn, C. J. Dirk, A. Mezzacappa, J. C. Hayes, J. M. Blondin, W. R. Hix, and O. E. B. Messer, “Modeling Core Collapse Supernovae in 2 and 3 dimensions with spectral neutrino transport,” J. Phys.: Conf. Ser. 46, 393 (2006).
43. A. Burrows, E. Livne, L. Dessart, C. D. Ott, and J. Murphy, “Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions,” ApJ 655, 416 (2007).
44. Y. Suwa, T. Takiwaki, S. C. Whitehouse, M. Liebendörfer, and K. Sato, “Explosion geometry of a rotating 13 m star driven by the sasi-aided neutrino-heating supernova mechanism,” PASJ 62, L49 (2010).
45. S. W. Bruenn, A. Mezzacappa, W. R. Hix, E. J. Lentz, O. E. B. Messer, E. J. Lingerfelt, J. M. Blondin, E. Endeve, P. Marronetti, and K. N. Yakunin, “Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12–25 M Stars,” ApJ 767, L6 (2013), arXiv:arXiv:1212.1747 [astro-ph.SR].
46. B. Müller, H.-T. Janka, and A. Marek, “A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code for Core-Collapse Supernovae II. Relativistic Explosion Models of Core-Collapse Supernovae,” ApJ 756, 84 (2012), arXiv:1202.0815 [astro-ph.SR].
47. F. Hanke, B. Müller, A. Wongwathanarat, A. Marek, and H.-T. Janka, “SASI Activity in Three-dimensional Neutrino-hydrodynamics Simulations of Supernova Cores,” ApJ 770, 66 (2013), arXiv:1303.6269 [astro-ph.SR].
48. T. Takiwaki, K. Kotake, and Y. Suwa, “A Comparison of Two- and Three-dimensional Neutrino-hydrodynamics simulations of Core-collapse Supernovae,” ApJ, submitted (2013), arXiv:1308.5755 [astro-ph.SR].
49. S. W. Bruenn, “Neutrino interactions and supernovae,” in Seventh Texas Symposium on Relativistic Astrophysics, Annals of the New York Academy of Sciences, Vol. 262, edited by P. G. Bergman, E. J. Fenyves, and L. Motz (1975) pp. 8094.
50. W. D. Arnett, “Neutrino Trapping During Gravitational Collapse of Stars,” ApJ 218, 815 (1977).
51. R. L. Bowers and J. R. Wilson, “A numerical model for stellar core collapse calculations,” ApJS 50, 115 (1982).
52. E. S. Myra, S. A. Bludman, Y. Hoffman, I. Lichenstadt, N. Sack, and K. A. van Riper, “The effect of neutrino transport on the collapse of iron stellar cores,” ApJ 318, 744 (1987).
53. J. Cernohorsky and S. A. Bludman, “Maximum entropy distribution and closure for Bose-Einstein and Fermi-Dirac radiation transport,” ApJ 433, 250 (1994).
54. J. M. Smit, L. J. van den Horn, and S. A. Bludman, “Closure in flux-limited neutrino diffusion and two-moment transport,” A&A 356, 559 (2000).
55. E. J. Lentz, A. Mezzacappa, O. E. B. Messer, M. Liebendörfer, W. R. Hix, and S. W. Bruenn, “On the Requirements for Realistic Modeling of Neutrino Transport in Simulations of Core-Collapse Supernovae,” ApJ 747, 73 (2012), arXiv:1112.3595 [astro-ph.SR].
56. E. Livne, A. Burrows, R. Walder, I. Lichtenstadt, and T. A. Thompson, “Two-dimensional, Time-dependent, Multigroup, Multiangle Radiation Hydrodynamics Test Simulation in the Core-Collapse Supernova Context,” ApJ 609, 277 (2004), arXiv:astro-ph/0312633.
57. L. Smarr, J. R. Wilson, R. T. Barton, and R. L. Bowers, “Rayleigh-Taylor overturn in supernova core collapse,” ApJ 246, 515 (1981).
58. W. Keil, H.-T. Janka, and E. Müller, “Ledoux Convection in Protoneutron Stars–A Clue to Supernova Nucleosynthesis?” ApJ 473, L111 (1996).
59. J. A. Miralles, J. A. Pons, and V. A. Urpin, “Hydromagnetic Instabilities in Proto-Neutron Stars,” ApJ 574, 356 (2002).
60. S. W. Bruenn, E. A. Raley, and A. Mezzacappa, “Fluid Stability Below the Neutrinospheres of Supernova Progenitors and the Dominant Role of Lepto-Entropy Fingers,” ArXiv Astrophysics e-prints (2004), submitted to ApJ, astro-ph/0404099.
61. M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, “Inside the supernova: A powerful convective engine,” ApJ 435, 339 (1994).
62. A. Burrows, J. Hayes, and B. A. Fryxell, “On the Nature of Core Collapse Supernovae Explosions,” ApJ 450, 830 (1995).
63. A. Mezzacappa, A. C. Calder, S. W. Bruenn, J. M. Blondin, M. W. Guidry, M. R. Strayer, and A. S. Umar, “The Interplay Between Proto-Neutron Star Convection and Neutrino Transport in Core–Collapse Supernovae,” ApJ 493, 848 (1998).
64. J. Blondin, A. Mezzacappa, and C. DeMarino, “Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae,” ApJ 584, 971 (2003).
65. H.-T. Janka, R. Buras, F. S. Kitaura Joyanes, A. Marek, M. Rampp, and L. Scheck, “Neutrino-driven supernovae: An accretion instability in a nuclear physics controlled environment,” Nucl. Phys. A 758, 19 (2005), arXiv:astro-ph/0411347.
66. A. Burrows, E. Livne, L. Dessart, C. D. Ott, and J. Murphy, “A New Mechanism for Core-Collapse Supernova Explosions,” ApJ 640, 878 (2006), astro-ph/0510687.
67. N. Ohnishi, K. Kotake, and S. Yamada, “Numerical Analysis of Standing Accretion Shock Instability with Neutrino Heating in Supernova Cores,” ApJ 641, 1018 (2006), arXiv:astro-ph/0509765.
68. C. L. Fryer and M. S. Warren, “The Collapse of Rotating Massive Stars in Three Dimensions,” ApJ 601, 391 (2004).
69. S. W. Bruenn, A. Mezzacappa, W. R. Hix, J. M. Blondin, P. Marronetti, O. E. B. Messer, C. J. Dirk, and S. Yoshida, “2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code,” Proceedings of SciDAC 2009, J. Phys.: Conf. Ser. 180, 012018 (2009).
70. A. Marek and H.-T. Janka, “Delayed Neutrino-Driven Supernova Explosions Aided by the Standing Accretion-Shock Instability,” ApJ 694, 664 (2009), arXiv:0708.3372.
71. E. J. Lentz, A. Mezzacappa, O. E. B. Messer, W. R. Hix, and S. W. Bruenn, “Interplay of Neutrino Opacities in Core-collapse Supernova Simulations,” ApJ 760, 94 (2012), arXiv:1206.1086 [astro-ph.SR].
72. R. Buras, M. Rampp, H.-T. Janka, and K. Kifonidis, “Improved Models of Stellar Core Collapse and Still No Explosions: What Is Missing?” Phys. Rev. Lett. 90, 241101 (2003).
73. B. Müller, H.-T. Janka, and A. Heger, “New Two-dimensional Models of Supernova Explosions by the Neutrino-heating Mechanism: Evidence for Different Instability Regimes in Collapsing Stellar Cores,” ApJ 761, 72 (2012), arXiv:1205.7078 [astro-ph.SR].
74. R. H. Kraichnan, “Inertial Ranges in Two-Dimensional Turbulence,” Phys. Fluids 10, 1417 (1967).
75. C. L. Fryer and M. S. Warren, “Modeling Core-Collapse Supernovae in Three Dimensions,” ApJ 574, L65 (2002).
76. J. M. Blondin and A. Mezzacappa, “The Spherical Accretion Shock Instability in the Linear Regime,” ApJ 642, 401 (2006), astro-ph/0507181.
77. J. Nordhaus, A. Burrows, A. Almgren, and J. Bell, “Dimension as a Key to the Neutrino Mechanism of Core-collapse Supernova Explosions,” ApJ 720, 694 (2010), arXiv:1006.3792 [astro-ph.SR].
78. F. Hanke, A. Marek, B. Mueller, and H.-T. Janka, “Is Strong SASI Activity the Key to Successful Neutrino-Driven Supernova Explosions?” ApJ 755, 138 (2012), arXiv:arXiv:1108.4355 [astro-ph.SR].
79. S. M. Couch, “On the Impact of Three Dimensions in Simulations of Neutrino-Driven Core-Collapse Supernova Explosions,” ApJ submitted (2012), arXiv:1212.0010 [astro-ph.HE].
80. S. E. Woosley and A. Heger, “Nucleosynthesis and remnants in massive stars of solar metallicity,” Phys. Rep. 442, 269 (2007), arXiv:astro-ph/0702176.
81. C. W. Misner and D. H. Sharp, “Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse,” Phys. Rep. 136, 571 (1964).
82. M. M. May and R. H. White, Comput. Phys. 7, 219 (1967).
83. T. Nakamura, K. Oohara, and Y. Kojima, “General relativistic collapse to black holes and gravitational waves from black holes,” Prog. Theor. Phys. Suppl. 90, 1 (1987).
84. M. Shibata and T. Nakamura, “Evolution of three-dimensional gravitational waves: Harmonic slicing case,” Phys. Rev. D 52, 5428 (1995).
85. T. W. Baumgarte and S. L. Shapiro, “Numerical integration of Einstein's field equations,” Phys. Rev. D 59, 024007 (1998).
86. S. W. Bruenn et al., “Chimera: A massively parallel, multi-physiscs code for core-collapse supernova simulations,” ApJS, in preparation (2012).
87. C. D. Ott, E. Abdikamalov, P. Mösta, R. Haas, S. Drasco, E. P. O'Connor, C. Reisswig, C. A. Meakin, and E. Schnetter, “General-relativistic Simulations of Three-dimensional Core-collapse Supernovae,” ApJ 768, 115 (2013), arXiv:1210.6674 [astro-ph.HE].
88. H. C. Spruit, “Dynamo action by differential rotation in a stably stratified stellar interior,” A&A 381, 923 (2002), astro-ph/0108207.
89. R. C. Duncan, and C. Thompson, “Magnetars,” in High Velocity Neutron Stars, American Institute of Physics Conference Series, Vol. 366, edited by R. E. Rothschild and R. E. Lingenfelter (1996) pp. 111117.
90. P. M. Woods, and C. Thompson, “Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates,” in Compact stellar X-ray sources, edited by W. H. G. Lewin and M. van der Klis (2006) pp. 547586.
91. D. R. Lorimer, and M. Kramer, Handbook of pulsar astronomy, by D. R. Lorimer and M. Kramer. Cambridge observing handbooks for research astronomers, Vol. 4. Cambridge, UK: Cambridge University Press, 2004, edited by R. Ellis, J. Huchra, S. Kahn, G. Rieke, and P. B. Stetson (2004).
92. J. M. LeBlanc and J. R. Wilson, “A Numerical Example of the Collapse of a Rotating Magnetized Star,” ApJ 161, 541 (1970).
93. G. S. Bisnovatyi-Kogan, I. P. Popov, and A. A. Samokhin, “The magnetohydrodynamic rotational model of supernova explosion,” Ap&SS 41, 287 (1976).
94. D. Meier, R. I. Epstein, W. D. Arnett, and D. N. Schramm, “Magnetohydrodynamical Phenomena in Collapsing Stellar Cores,” ApJ 204, 869 (1976).
95. E. M. D. Symbalisty, “Magnetorotational Iron Core Collapse,” ApJ 285, 729 (1984).
96. J. C. Wheeler, D. L. Meier, and J. R. Wilson, “Asymmetric Supernovae from Magnetocentrifugal Jets,” ApJ 568, 807 (2002).
97. S. Akiyama, J. C. Wheeler, D. L. Meier, and I. Lichtenstadt, “The Magnetorotational Instability in Core-Collapse Supernova Explosions,” ApJ 584, 954 (2003).
98. K. Kotake, H. Sawai, S. Yamada, and K. Sato, “Magnetorotational Effects on Anisotropic Neutrino Emission and Convection in Core-Collapse Supernovae,” ApJ 608, 391 (2004).
99. T. A. Thompson, E. Quataert, and A. Burrows, “Viscosity and Rotation in Core-Collapse Supernovae,” ApJ 620, 861 (2005).
100. M. Obergaulinger, M. A. Aloy, and E. Müller, “Axisymmetric simulations of magneto-rotational core collapse: dynamics and gravitational wave signal,” A&A 450, 1107 (2006), astro-ph/0510184.
101. S. G. Moiseenko, G. S. Bisnovatyi-Kogan, and N. V. Ardeljan, “A magnetorotational core-collapse model with jets,” MNRAS 370, 501 (2006).
102. M. Shibata, Y. T. Liu, S. L. Shapiro, and B. C. Stephens, “Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity,” Phys. Rev. D 74, 104026 (2006).
103. A. Burrows, L. Dessart, E. Livne, C. D. Ott, and J. Murphy, “Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation,” ApJ 664, 416 (2007), arXiv:astro-ph/0702539.
104. T. Takiwaki, K. Kotake, and K. Sato, “Special Relativistic Simulations of Magnetically Dominated Jets in Collapsing Massive Stars,” ApJ 691, 1360 (2009), arXiv:0712.1949.
105. C. Winteler, R. Käppeli, A. Perego, A. Arcones, N. Vasset, N. Nishimura, M. Liebendörfer, and F.-K. Thielemann, “Magnetorotationally Driven Supernovae as the Origin of Early Galaxy r-process Elements?” ApJ 750, L22 (2012), arXiv:1203.0616 [astro-ph.SR].
106. L. Wang, D. A. Howell, P. Höflich, and J. C. Wheeler, “Bipolar Supernova Explosions,” ApJ 550, 1030 (2001).
107. D. Lai and Y.-Z. Qian, “Neutrino Transport in Strongly Magnetized Proto-Neutron Stars and the Origin of Pulsar Kicks: The Effect of Asymmetric Magnetic Field Topology,” ApJ 505, 844 (1998), astro-ph/9802345.
108. S. Balbus and J. Hawley, ApJ 376, 214 (1991).
109. A. Heger, S. E. Woosley, and H. C. Spruit, “Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields,” ApJ 626, 350 (2005), arXiv:astro-ph/0409422.
110. M. Obergaulinger, P. Cerdá-Durán, E. Müller, and M. A. Aloy, “Semi-global simulations of the magneto-rotational instability in core collapse supernovae,” A&A 498, 241 (2009), arXiv:0811.1652.
111. Y. Masada, T. Takiwaki, K. Kotake, and T. Sano, “Local Simulations of the Magnetorotational Instability in Core-collapse Supernovae,” ApJ 759, 110 (2012), arXiv:1209.2360 [astro-ph.SR].
112. H. Sawai, S. Yamada, and H. Suzuki, “Global Simulations of Magnetorotational Instability in the Collapsed Core of a Massive Star,” ApJ 770, L19 (2013), arXiv:1303.2856 [astro-ph.HE].
113. T. K. Suzuki, K. Sumiyoshi, and S. Yamada, “Alfvén Wave-Driven Supernova Explosion,” ApJ 678, 1200 (2008), arXiv:0707.4345.
114. E. Endeve, C. Y. Cardall, R. D. Budiardja, and A. Mezzacappa, “Generation of Magnetic Fields By the Stationary Accretion Shock Instability,” ApJ 713, 1219 (2010), arXiv:0811.3385.
115. E. Endeve, C. Y. Cardall, R. D. Budiardja, S. W. Beck, A. Bejnood, R. J. Toedte, A. Mezzacappa, and J. M. Blondin, “Turbulent Magnetic Field Amplification from Spiral SASI Modes: Implications for Core-Collapse Supernovae and Proto-Neutron Star Magnetization,” ApJ 751, 26 (2012).
116. E. Endeve, C. Y. Cardall, R. D. Budiardja, A. Mezzacappa, and J. M. Blondin, “Turbulence and magnetic field amplification from spiral SASI modes in core-collapse supernovae,” Physica Scripta Volume T 155, 014022 (2013), arXiv:1203.3748 [astro-ph.SR].
117. M. Obergaulinger and H.-T. Janka, “Magnetic field amplification in collapsing, non-rotating stellar cores,” ArXiv e-prints (2011), arXiv:1101.1198 [astro-ph.SR].
118. J. Guilet, T. Foglizzo, and S. Fromang, “Dynamics of an Alfvén Surface in Core Collapse Supernovae,” ApJ 729, 71 (2011), arXiv:1006.4697 [astro-ph.SR].
119. H. Sawai, S. Yamada, K. Kotake, and H. Suzuki, “Effects of Resistivity on Magnetized Core-collapse Supernovae,” ApJ 764, 10 (2013), arXiv:1211.6817 [astro-ph.HE].
120. C. Thompson and R. C. Duncan, “Neutron star dynamos and the origins of pulsar magnetism,” ApJ 408, 194 (1993).
121. D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, “Structure of Matter below Nuclear Saturation Density,” Phys. Rev. Lett. 50, 2066 (1983).
122. J. Lattimer and F. D. Swesty, “A Generalized Equation of State for Hot, Dense Matter,” Nucl. Phys. A 535, 331 (1991).
123. D. Q. Lamb, J. M. Lattimer, C. J. Pethick, and D. G. Ravenhall, “Hot dense matter and stellar collapse,” Phys. Rev. Lett. 41, 1623 (1978).
124. F. D. Swesty, J. M. Lattimer, and E. S. Myra, “The role of the equation of state in the ‘prompt’ phase of type II supernovae,” ApJ 425, 195 (1994).
125. E. J. Lentz, W. R. Hix, M. L. Baird, O. E. B. Messer, and A. Mezzacappa, “Evaluating nuclear physics inputs in core-collapse supernova models,” in Ref. 228, p. 152, arXiv:1101.0156.
126. H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, “Relativistic Equation of State of Nuclear Matter for Supernova Explosion,” Prog. Theor. Phys. 100, 1013 (1998), nucl-th/9806095.
127. K. Oyamatsu, “Nuclear shapes in the inner crust of a neutron star,” Nucl. Phys. A 561, 431 (1993).
128. J. R. Wilson and G. J. Mathews, Relativistic Numerical Hydrodynamics, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2003).
129. R. W. Mayle, and J. R. Wilson, “Calculations of Neutrino Heating Supernovae,” in Supernovae, edited by S. E. Woosley (Springer, New York, 1991) p. 333.
130. T. L. McAbee and J. R. Wilson, “Mean-field pion calculations of heavy-ion collisions at Bevalac energies,” Nucl. Phys. A 576, 626 (1994).
131. H. Muther, M. Prakash, and T. L. Ainsworth, “The nuclear symmetry energy in relativistic Brueckner-Hartree-Fock calculations,” Phys. Lett. B 199, 469 (1987).
132. B. Friedman, V. R. Pandharipande, and Q. N. Usmani, “Very hot nuclear matter and pion production in relativistic heavy-ion collisions,” Nucl. Phys. A 372, 483 (1981).
133. M. Hempel and J. Schaffner-Bielich, “A statistical model for a complete supernova equation of state,” Nucl. Phys. A 837, 210 (2010), arXiv:0911.4073 [nucl-th].
134. G. Shen, C. J. Horowitz, and S. Teige, “New equation of state for astrophysical simulations,” Phys. Rev. C 83, 035802 (2011), arXiv:1101.3715 [astro-ph.SR].
135. G. Shen, C. J. Horowitz, and E. O'Connor, “Second relativistic mean field and virial equation of state for astrophysical simulations,” Phys. Rev. C 83, 065808 (2011), arXiv:1103.5174 [astro-ph.SR].
136. W. R. Hix, O. E. B. Messer, A. Mezzacappa, M. Liebendörfer, J. M. Sampaio, K. Langanke, D. J. Dean, and G. Martinez-Pinedo, “Consequences of Nuclear Electron Capture in Core Collapse Supernovae,” Phys. Rev. Lett. 91, 201102 (2003), astro-ph/0310883.
137. K. Langanke, G. Martínez-Pinedo, J. M. Sampaio, D. J. Dean, W. R. Hix, O. E. Messer, A. Mezzacappa, M. Liebendörfer, H.-T. Janka, and M. Rampp, “Electron Capture Rates on Nuclei and Implications for Stellar Core Collapse,” Phys. Rev. Lett. 90, 241102 (2003).
138. H. A. Bethe, G. E. Brown, J. Applegate, and J. M. Lattimer, “Equation of state in the gravitational collapse of stars,” Nucl. Phys. A 324, 487 (1979).
139. G. M. Fuller, “Neutron shell blocking of electron capture during gravitational collapse,” ApJ 252, 741 (1982).
140. J. Cooperstein and J. Wambach, “Electron Capture in Stellar Collapse,” Nucl. Phys. A 420, 591 (1984).
141. K. Langanke and G. Martínez-Pinedo, “Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range A=45-65 in supernovae environments,” Nucl. Phys. A 673, 481 (2000).
142. K. Langanke, E. Kolbe, and D. J. Dean, “Unblocking of the Gamow-Teller strength in stellar electron capture on neutron-rich germanium isotopes,” Phys. Rev. C 63, 32801 (2001).
143. G. Martínez-Pinedo, M. Liebendörfer, and D. Frekers, “Nuclear input for core-collapse models,” Nucl. Phys. A 777, 395 (2006), arXiv:astro-ph/0412091.
144. A. Juodagalvis, K. Langanke, W. R. Hix, G. Martínez-Pinedo, and J. M. Sampaio, “Improved estimate of electron capture rates on nuclei during stellar core collapse,” Nucl. Phys. A 848, 454 (2010), arXiv:0909.0179 [nucl-th].
145. A. Mezzacappa and S. W. Bruenn, “Stellar Core Collapse: A Boltzmann Treatment of Neutrino–Electron Scattering,” ApJ 410, 740 (1993).
146. S. Reddy, M. Prakash, J. M. Lattimer, and J. A. Pons, “Effects of strong and electromagnetic correlations on neutrino interactions in dense matter,” Phys. Rev. C 59, 2888 (1999), arXiv:astro-ph/9811294.
147. P. J. Schinder and S. L. Shapiro, “Neutrino emission from a hot, dense, plane-parallel atmosphere in hydrostatic equilibrium. II. Numerical methods and interaction functions,” ApJS 50, 23 (1982).
148. S. Hannestad and G. Raffelt, “Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung and Related Processes,” ApJ 507, 339 (1998).
149. F. E. Clifford and R. J. Tayler, “The equilibrium distribution of nuclides in matter at high temperatures,” Mem. RAS 69, 21 (1965).
150. D. Hartmann, S. E. Woosley, and M. F. El Eid, “Nucleosynthesis in neutron-rich supernova ejecta,” ApJ 297, 837 (1985).
151. S. E. Woosley, W. D. Arnett, and D. D. Clayton, “The explosive burning of oxygen and silicon,” ApJS 26, 231 (1973).
152. S. E. Woosley and T. A. Weaver, “The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis,” ApJS 101, 181 (1995).
153. F.-K. Thielemann, K. Nomoto, and M. Hashimoto, “Core-Collapse Supernovae and Their Ejecta,” ApJ 460, 408 (1996).
154. M. Limongi and A. Chieffi, “Evolution, Explosion, and Nucleosynthesis of Core-Collapse Supernovae,” ApJ 592, 404 (2003).
155. C. Fransson, A. Cassatella, R. Gilmozzi, R. P. Kirshner, N. Panagia, G. Sonneborn, and W. Wamsteker, “Narrow ultraviolet emission lines from SN 1987A - Evidence for CNO processing in the progenitor,” ApJ 336, 429 (1989).
156. D. J. Jeffery, R. P. Kirshner, P. M. Challis, C. S. J. Pun, A. V. Filippenko, T. Matheson, D. Branch, R. A. Chevalier, C. Fransson, N. Panagia, R. V. Wagoner, J. C. Wheeler, and A. Clocchiatti, “A Hubble Space Telescope ultraviolet spectrum of SN 1993J,” ApJ 421, L27 (1994).
157. C. S. J. Pun, R. P. Kirshner, G. Sonneborn, P. Challis, G. Nassiopoulos, R. Arquilla, D. M. Crenshaw, C. Shrader, T. Teays, A. Cassatella, R. Gilmozzi, A. Talavera, W. Wamsteker, C. Fransson, and N. Panagia, “Ultraviolet Observations of SN 1987A with the IUE Satellite,” ApJS 99, 223 (1995).
158. W. P. Blair, J. A. Morse, J. C. Raymond, R. P. Kirshner, J. P. Hughes, M. A. Dopita, R. S. Sutherland, K. S. Long, and P. F. Winkler, “Hubble Space Telescope Observations of Oxygen-rich Supernova Remnants in the Magellanic Clouds. II. Elemental Abundances in N132D and 1E 0102.2-7219,” ApJ 537, 667 (2000).
159. W. P. Blair, P. Ghavamian, R. Sankrit, and C. W. Danforth, “Far Ultraviolet Spectroscopic Explorer Survey of Magellanic Cloud Supernova Remnants,” ApJS 165, 480 (2006), astro-ph/0605508.
160. R. Sankrit, W. P. Blair, J. Y. Cheng, J. C. Raymond, T. J. Gaetz, and A. Szentgyorgyi, “Far Ultraviolet Spectroscopic Explorer Spectroscopy of the XA Region in the Cygnus Loop Supernova Remnant,” AJ 133, 1383 (2007).
161. K. Schawinski, S. Justham, C. Wolf, P. Podsiadlowski, M. Sullivan, K. C. Steenbrugge, T. Bell, H. Röser, E. S. Walker, P. Astier, D. Balam, C. Balland, R. Carlberg, A. Conley, D. Fouchez, J. Guy, D. Hardin, I. Hook, D. A. Howell, R. Pain, K. Perrett, C. Pritchet, N. Regnault, and S. K. Yi, “Supernova Shock Breakout from a Red Supergiant,” Science 321, 223 (2008), arXiv:0803.3596.
162. N. Tominaga, S. Blinnikov, P. Baklanov, T. Morokuma, K. Nomoto, and T. Suzuki, “Properties of Type II Plateau Supernova SNLS-04D2dc: Multicolor Light Curves of Shock Breakout and Plateau,” ApJ 705, L10 (2009), arXiv:0908.2162.
163. P. J. Brown, L. Dessart, S. T. Holland, S. Immler, W. Landsman, S. Blondin, A. J. Blustin, A. Breeveld, G. C. Dewangan, N. Gehrels, R. B. Hutchins, R. P. Kirshner, K. O. Mason, P. A. Mazzali, P. Milne, M. Modjaz, and P. W. A. Roming, “Early Ultraviolet, Optical and X-Ray Observations of the Type IIP SN 2005cs in M51 with Swift,” ApJ 659, 1488 (2007), astro-ph/0612541.
164. P. Chandra, V. V. Dwarkadas, A. Ray, S. Immler, and D. Pooley, “X-rays from the Explosion Site: 15 Years of Light Curves of SN 1993J,” ApJ 699, 388 (2009), arXiv:0904.3955 [astro-ph.CO].
165. E. O. Ofek, A. Zoglauer, S. E. Boggs, N. M. Barriére, S. P. Reynolds, C. L. Fryer, F. A. Harrison, S. B. Cenko, S. R. Kulkarni, A. Gal-Yam, I. Arcavi, E. Bellm, J. S. Bloom, F. Christensen, W. W. Craig, W. Even, A. V. Filippenko, B. Grefenstette, C. J. Hailey, R. Laher, K. Madsen, E. Nakar, P. E. Nugent, D. Stern, M. Sullivan, J. Surace, and W. W. Zhang, “SN 2010jl: Optical to Hard X-Ray Observations Reveal an Explosion Embedded in a Ten Solar Mass Cocoon,” ApJ 781, 42 (2014), arXiv:1307.2247 [astro-ph.HE].
166. J. P. Hughes, C. E. Rakowski, D. N. Burrows, and P. O. Slane, “Nucleosynthesis and Mixing in Cassiopeia A,” ApJ 528, L109 (2000).
167. B. W. Grefenstette, F. A. Harrison, S. E. Boggs, S. P. Reynolds, C. L. Fryer, K. K. Madsen, D. R. Wik, A. Zoglauer, C. I. Ellinger, D. M. Alexander, H. An, D. Barret, F. E. Christensen, W. W. Craig, K. Forster, P. Giommi, C. J. Hailey, A. Hornstrup, V. M. Kaspi, T. Kitaguchi, J. E. Koglin, P. H. Mao, H. Miyasaka, K. Mori, M. Perri, M. J. Pivovaroff, S. Puccetti, V. Rana, D. Stern, N. J. Westergaard, and W. W. Zhang, “Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in cassiopeia a,” Nature 506, 339 (2014).
168. M. D. Leising, “55Fe in Supernova 1987A,” ApJ 651, 1019 (2006).
169. R. Kotak, P. Meikle, M. Pozzo, S. D. van Dyk, D. Farrah, R. Fesen, A. V. Filippenko, R. J. Foley, C. Fransson, C. L. Gerardy, P. A. Höflich, P. Lundqvist, S. Mattila, J. Sollerman, and J. C. Wheeler, “Spitzer Measurements of Atomic and Molecular Abundances in the Type IIP SN 2005af,” ApJ 651, L117 (2006), astro-ph/0609706.
170. K. Kjær, B. Leibundgut, C. Fransson, A. Jerkstrand, and J. Spyromilio, “The 3-D structure of SN 1987A's inner ejecta,” A&A 517, A51 (2010), arXiv:1003.5684 [astro-ph.SR].
171. E. Oliva, D. Lutz, S. Drapatz, and A. F. M. Moorwood, “ISO-SWS spectroscopy of IC443 and the origin of the IRAS 12 and 25 MU M emission from radiative supernova remnants,” A&A 341, L75 (1999).
172. K. Isensee, L. Rudnick, T. DeLaney, J. D. Smith, J. Rho, W. T. Reach, T. Kozasa, and H. Gomez, “The Three-dimensional Structure of Interior Ejecta in Cassiopeia A at High Spectral Resolution,” ApJ 725, 2059 (2010), arXiv:1006.0918 [astro-ph.GA].
173. K. Isensee, G. Olmschenk, L. Rudnick, T. DeLaney, J. Rho, J. D. Smith, W. T. Reach, T. Kozasa, and H. Gomez, “Nucleosynthetic Layers in the Shocked Ejecta of Cassiopeia A,” ApJ 757, 126 (2012), arXiv:1208.4034 [astro-ph.SR].
174. L. Wang and J. C. Wheeler, “Spectropolarimetry of Supernovae,” ARA&A 46, 433 (2008), arXiv:0811.1054.
175. P. A. Mazzali, K. S. Kawabata, K. Maeda, R. J. Foley, K. Nomoto, J. Deng, T. Suzuki, M. Iye, N. Kashikawa, Y. Ohyama, A. V. Filippenko, Y. Qiu, and J. Wei, “The Aspherical Properties of the Energetic Type Ic SN 2002ap as Inferred from Its Nebular Spectra,” ApJ 670, 592 (2007), arXiv:0708.0966.
176. J. Spyromilio, W. P. S. Meikle, and D. A. Allen, “Spectral line profiles of iron and nickel in supernova 1987A - Evidence for a fragmented nickel bubble,” MNRAS 242, 669 (1990).
177. R. W. Hanuschik, G. Thimm, and J. Dachs, “H-alpha fine-structure in SN 1987A within the first 111 days,” MNRAS 234, 41P (1988).
178. V. P. Utrobin, N. N. Chugai, and A. A. Andronova, “Asymmetry of SN 1987A: Fast Ni-56 clump,” A&A 295, 129 (1995).
179. A. Fassia and W. P. S. Meikle, “56Ni dredge-up in Supernova 1987A,” MNRAS 302, 314 (1999), arXiv:astro-ph/9809244.
180. D. D. Clayton, M. D. Leising, L.-S. The, W. N. Johnson, and J. D. Kurfess, “The Co-57 abundance in SN 1987A,” ApJ 399, L141 (1992).
181. W. Chen and N. Gehrels, “The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in VELA,” ApJ 514, L103 (1999).
182. M. Renaud, J. Vink, A. Decourchelle, F. Lebrun, P. R. d. Hartog, R. Terrier, C. Couvreur, J. Knödlseder, P. Martin, N. Prantzos, A. M. Bykov, and H. Bloemen, “The Signature of 44Ti in Cassiopeia A Revealed by IBIS/ISGRI on INTEGRAL,” ApJ 647, L41 (2006), arXiv:astro-ph/0606736.
183. R. Diehl and F. X. Timmes, “Gamma-Ray Line Emission from Radioactive Isotopes in Stars and Galaxies,” PASP 110, 637 (1998).
184. E. Zinner, “Stellar Nucleosynthesis and the Isotopic Composition of Presolar Grains from Primitive Meteorites,” Annual Review of Earth and Planetary Sciences 26, 147 (1998).
185. E. Zinner, “Presolar grains,” in Treatise on Geochemistry, Vol. 1, edited by H. D. Holland and K. K. Turekian (Pergamon, Oxford, 2003) pp. 133, ISBN 978-0-08-043751-4.
186. E. Zinner, “Presolar grains,” in Treatise on Geochemistry (Second Edition), Vol. 1, edited by H. D. Holland and K. K. Turekian (Elsevier, Oxford, 2014) second edition ed., pp. 181213, ISBN 978-0-08-098300-4.
187. S. Amari, E. Zinner, and R. S. Lewis, “Large 18O Excesses in Circumstellar Graphite Grains from the Murchison Meteorite: Indication of a Massive-Star Origin,” ApJ 447, L147 (1995).
188. W. Fujiya, P. Hoppe, E. Zinner, M. Pignatari, and F. Herwig, “Evidence for Radiogenic Sulfur-32 in Type AB Presolar Silicon Carbide Grains?” ApJ 776, L29 (2013), arXiv:1310.0485 [astro-ph.SR].
189. L. R. Nittler, S. Amari, E. Zinner, S. E. Woosley, and R. S. Lewis, “Extinct 44Ti in Presolar Graphite and SiC: Proof of a Supernova Origin,” ApJ 462, L31 (1996).
190. S. J. Smartt, “Progenitors of Core-Collapse Supernovae,” ARA&A 47, 63 (2009), arXiv:0908.0700.
191. C. Ellinger, P. Young, and C. L. Fryer, “Nucleosynthetic Constraints on the Progenitor of Cassiopeia A,” in Ref. 229, p. 206.
192. O. Krause, S. M. Birkmann, T. Usuda, T. Hattori, M. Goto, G. H. Rieke, and K. A. Misselt, “The Cassiopeia A Supernova Was of Type IIb,” Science 320, 1195 (2008), arXiv:0805.4557.
193. T. Rauscher, A. Heger, R. D. Hoffman, and S. E. Woosley, “Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics,” ApJ 576, 323 (2002).
194. S. Nagataki, T. M. Shimizu, and K. Sato, “Matter Mixing from Axisymmetric Supernova Explosion,” ApJ 495, 413 (1998), arXiv:astro-ph/9709152.
195. H. Umeda and K. Nomoto, “How Much 56Ni Can Be Produced in Core-Collapse Supernovae? Evolution and Explosions of 30-100 M Stars,” ApJ 673, 1014 (2008), arXiv:0707.2598.
196. M. B. Aufderheide, E. Baron, and F. K. Thielemann, “Shock waves and nucleosynthesis in type II supernovae,” ApJ 370, 630 (1991).
197. C. Fryer, P. Young, M. E. Bennet, S. Diehl, F. Herwig, R. Hirschi, A. Hungerford, M. Pignatari, G. Magkotsios, G. Rockefeller, and F. X. Timmes, “Nucleosynthesis from Supernovae as a Function of Explosion Energy from NuGrid,” in Ref. 229, p. 101.
198. V. Trimble, “The origin and abundances of the chemical elements revisited,” A&AR 3, 1 (1991).
199. R. D. Hoffman, S. E. Woosley, G. M. Fuller, and B. S. Meyer, “Production of the Light p-Process Nuclei in Neutrino-driven Winds,” ApJ 460, 478 (1996).
200. C. L. Fryer and A. Hungerford, “Changing the r-Process Paradigm: Multi-Dimensional and Fallback Effects,” in The r-Process: The Astrophysical Origin of the Heavy Elements and Related Rare Isotope Accelerator Physics (2004) p. 234.
201. C. Fröhlich, P. Hauser, M. Liebendörfer, G. Martínez-Pinedo, F.-K. Thielemann, E. Bravo, N. T. Zinner, W. R. Hix, K. Langanke, A. Mezzacappa, and K. Nomoto, “Composition of the Innermost Supernova Ejecta,” ApJ 637, 415 (2006), astro-ph/0410208.
202. C. Fröhlich, G. Martínez-Pinedo, M. Liebendörfer, F. K. Thielemann, E. Bravo, W. R. Hix, K. Langanke, and N. T. Zinner, “Neutrino-induced nucleosynthesis of A>64 nuclei: The nu p-process,” Phys. Rev. Lett. 96, 142502 (2006), arXiv:astro-ph/0511376.
203. J. Pruet, S. E. Woosley, R. Buras, H.-T. Janka, and R. D. Hoffman, “Nucleosynthesis in the Hot Convective Bubble in Core-Collapse Supernovae,” ApJ 623, 325 (2005).
204. J. Pruet, R. D. Hoffman, S. E. Woosley, H.-T. Janka, and R. Buras, “Nucleosynthesis in Early Supernova Winds. II. The Role of Neutrinos,” ApJ 644, 1028 (2006), astro-ph/0511194.
205. R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbuy, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy,” A&A 416, 1117 (2004).
206. C. Weber, V.-V. Elomaa, R. Ferrer, C. Fröhlich, D. Ackermann, J. Äystö, G. Audi, L. Batist, K. Blaum, M. Block, A. Chaudhuri, M. Dworschak, S. Eliseev, T. Eronen, U. Hager, J. Hakala, F. Herfurth, F. P. Hessberger, S. Hofmann, A. Jokinen, A. Kankainen, H.-J. Kluge, K. Langanke, A. Martín, G. Martínez-Pinedo, M. Mazzocco, I. D. Moore, J. B. Neumayr, Y. N. Novikov, H. Penttilä, W. R. Plass, A. V. Popov, S. Rahaman, T. Rauscher, C. Rauth, J. Rissanen, D. Rodríguez, A. Saastamoinen, C. Scheidenberger, L. Schweikhard, D. M. Seliverstov, T. Sonoda, F.-K. Thielemann, P. G. Thirolf, and G. K. Vorobjev, “Mass measurements in the vicinity of the rp-process and the νp-process paths with the penning trap facilities jyfltrap and shiptrap,” Phys. Rev. C 78, 054310 (2008).
207. C. A. Meakin and D. Arnett, “Active Carbon and Oxygen Shell Burning Hydrodynamics,” ApJ 637, L53 (2006), astro-ph/0601348.
208. G. Bazan and D. Arnett, “Two-dimensional Hydrodynamics of Pre–Core Collapse: Oxygen Shell Burning,” ApJ 496, 316 (1998), arXiv:astro-ph/9702239.
209. S. M. Asida and D. Arnett, “Further Adventures: Oxygen Burning in a Convective Shell,” ApJ 545, 435 (2000).
210. I. Hachisu, T. Matsuda, K. Nomoto, and T. Shigeyama, “Nonlinear growth of Rayleigh-Taylor instabilities and mixing in SN 1987A,” ApJ 358, L57 (1990).
211. E. Müller, B. Fryxell, and D. Arnett, “Instability and clumping in SN 1987A,” A&A 251, 505 (1991).
212. M. Herant and W. Benz, “Postexplosion hydrodynamics of SN 1987A,” ApJ 387, 294 (1992).
213. J. Kane, D. Arnett, B. A. Remington, S. G. Glendinning, G. Bazán, E. Müller, B. A. Fryxell, and R. Teyssier, “Two-dimensional versus Three-dimensional Supernova Hydrodynamic Instability Growth,” ApJ 528, 989 (2000).
214. R. McCray, “Supernova 1987A revisited,” ARA&A 31, 175 (1993).
215. K. Maeda, T. Nakamura, K. Nomoto, P. A. Mazzali, F. Patat, and I. Hachisu, “Explosive Nucleosynthesis in Aspherical Hypernova Explosions and Late-Time Spectra of SN 1998bw,” ApJ 565, 405 (2002).
216. K. Kifonidis, T. Plewa, L. Scheck, H.-T. Janka, and E. Müller, “Non-spherical core collapse supernovae. II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A,” A&A 453, 661 (2006), arXiv:astro-ph/0511369.
217. K. Kifonidis, T. Plewa, H.-T. Janka, and E. Müller, “Non-spherical core collapse supernovae. I. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps,” A&A 408, 621 (2003).
218. N. J. Hammer, H.-T. Janka, and E. Müller, “Three-dimensional Simulations of Mixing Instabilities in Supernova Explosions,” ApJ 714, 1371 (2010), arXiv:0908.3474 [astro-ph.SR].
219. L. Scheck, “Parametric Studies of Hydrodynamic Instabilities in the Supernova Core by Two- and Three-Dimensional Simulations,” Ph.D. thesis, Technical University Munich (2006).
220. L. Scheck, K. Kifonidis, H.-T. Janka, and E. Müller, “Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions,” A&A 457, 963 (2006).
221. P. Young, C. Ellinger, D. Arnett, C. Fryer, and G. Rockefeller, “Spatial Distribution of Nucleosynthesis Products in Cassiopeia A: Comparison Between Observations and 3D Explosion Models,” in Ref. 229, p. 20, arXiv:0811.4655.
222. C. I. Ellinger, P. A. Young, C. L. Fryer, and G. Rockefeller, “A Case Study of Small-scale Structure Formation in Three-dimensional Supernova Simulations,” ApJ 755, 160 (2012), arXiv:1206.1834 [astro-ph.SR].
223. C.-T. Lee, “The Applications of the Tracer Particle Method to Multi-Dimensional Supernova Simulations,” Ph.D. thesis, University of Tennessee (2008).
224. O. E. B. Messer, S. W. Bruenn, J. M. Blondin, M. A. Chertkow, W. R. Hix, C. Lee, E. J. Lentz, P. Marronetti, and K. N. Yakunin, “Core-Collapse Supernova Simulations with CHIMERA,” in Ref. 228, p. 027.
225. S. Wanajo, H.-T. Janka, and S. Kubono, “Uncertainties in the νp-process: Supernova Dynamics Versus Nuclear Physics,” ApJ 729, 46 (2011), arXiv:1004.4487 [astro-ph.SR].
226. A. Arcones and H.-T. Janka, “Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. II. The reverse shock in two-dimensional simulations,” A&A 526, A160 (2011), arXiv:1008.0882 [astro-ph.SR].
227. L. F. Roberts, S. E. Woosley, and R. D. Hoffman, “Integrated Nucleosynthesis in Neutrino-driven Winds,” ApJ 722, 954 (2010), arXiv:1004.4916 [astro-ph.HE].
228. G. Martínez-Pinedo et al., eds., Proceedings of Nuclei in the Cosmos XI (SISSA Proceedings of Science, 2010).
229. H. Schatz et al., eds., Proceedings of Nuclei in the Cosmos X (SISSA Proceedings of Science, 2008).

Data & Media loading...


Article metrics loading...



Carrying 1044 joules of kinetic energy and a rich mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up our solar system and ourselves. Signaling the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae combine physics over a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer-scale nuclear reactions. We will discuss our emerging understanding of the convectively-unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have recently motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of the births of neutron stars and the supernovae that result. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd