1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Observational constraints of stellar collapse: Diagnostic probes of nature's extreme matter experiment
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
    2 Space Radiation Lab, California Institute of Technology, Pasadena, CA 91125, USA
    3 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) & Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
    4 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
    a) Also at Physics and Astronomy Department, University of New Mexico, Albuquerque, NM 87545; Department of Physics, The University of Arizona, Tucson, AZ, 85721; fryer@lanl.gov
    AIP Advances 4, 041014 (2014); http://dx.doi.org/10.1063/1.4870404
/content/aip/journal/adva/4/4/10.1063/1.4870404
1.
1. S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.112502
2.
2. E. Baron, H. A. Bethe, G. E. Brown, J. Cooperstein, and S. Kahana, Phys. Rev. Lett. 59, 736 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.736
3.
3. F. Herwig, ARA&A 43, 435 (2005).
4.
4. M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, ApJ 435, 339 (1994).
http://dx.doi.org/10.1086/174817
5.
5. J. M. Blondin, A. Mezzacappa, and C. DeMarino, ApJ 584, 971 (2003).
http://dx.doi.org/10.1086/345812
6.
6. T. Foglizzo, P. Galletti, L. Scheck, and H.-Th. Janka, ApJ 654, 1006 (2007).
http://dx.doi.org/10.1086/509612
7.
7. A. de Gouvêa et al., hep-ex/1310.4340 (2013).
8.
8. G. Alimonti et al., Nucl. Instrum. Meth. A600, 568 (2009).
http://dx.doi.org/10.1016/j.nima.2008.11.076
9.
9. T. Mitsui et al., Nucl. Phys. Proc. Suppl 221, 193 (2011).
http://dx.doi.org/10.1016/j.nuclphysbps.2011.09.001
10.
10. C. Kraus, S. J. M. Peeters et al., Prog. Part. Nuc. Phys. 64, 273 (2010).
http://dx.doi.org/10.1016/j.ppnp.2009.12.027
11.
11. A. B. Balantekin et al., astro-ph/1307.7419.
12.
12. J. Maricic et al., Nucl. Phys. Proc. Suppl 221, 173 (2011).
http://dx.doi.org/10.1016/j.nuclphysbps.2011.03.115
13.
13. M. Wurm et al., Journ. Astroparticl Phys. 11, 685 (2012).
http://dx.doi.org/10.1016/j.astropartphys.2012.02.011
14.
14. K. Abe et al., Phys. Rev. D 83, 052010 (2011).
http://dx.doi.org/10.1103/PhysRevD.83.052010
15.
15. B. Aharmim et al., Phys. Rev. C 88, 025501 (2013).
http://dx.doi.org/10.1103/PhysRevC.88.025501
16.
16. L. F. Roberts, S. Reddy, and G. Shen, Phys. Rev. C 86, 065803 (2012).
http://dx.doi.org/10.1103/PhysRevC.86.065803
17.
17. G. Martínez-Pinedo, T. Fischer, A. Lohs, and L. Huther, Phys. Rev. Lett. 109, 251104 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.251104
18.
18. L. F. Roberts, G. Shen, V. Cirgliano, J. A. Pons, S. Reddy, and S. E. Woosley, Phys. Rev. Lett. 108, 061103 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.061103
19.
19. S. Reddy, M. Prakash, and J. M. Lattimer, Phys. Rev. D 58, 013009 (2012).
http://dx.doi.org/10.1103/PhysRevD.58.013009
20.
20. H. Duan, G. M. Fuller, and Y.-Z. Qian, Phys. Rev. D 74, 123004 (2006).
http://dx.doi.org/10.1103/PhysRevD.74.123004
21.
21. G. L. Fogli, E. Lisi, A. Marrone, and A. Mirizzi, JCAP 0712, 010 (2007).
http://dx.doi.org/10.1088/1475-7516/2007/12/010
22.
22. G. G. Raffelt and A. Y. Smirnov, Phys. Rev. D 76, 081301 (2007).
http://dx.doi.org/10.1103/PhysRevD.76.081301
23.
23. G. G. Raffelt and A. Y. Smirnov, Phys. Rev. D 76, 125008 (2007).
http://dx.doi.org/10.1103/PhysRevD.76.125008
24.
24. A. Esteban-Pretel, A. Mirizzi, S. Pastor, R. Tomas, G. G. Raffelt et al., Phys. Rev. D 78, 085012 (2008).
http://dx.doi.org/10.1103/PhysRevD.78.085012
25.
25. H. Duan and J. P. Kneller, J. Phys. G G36, 113201 (2009).
http://dx.doi.org/10.1088/0954-3899/36/11/113201
26.
26. B. Dasgupta, A. Dighe, G. G. Raffelt, and A. Yu. Smirnov, Phys. Rev. Lett. 103, 051105 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.051105
27.
27. H. Duan, G. M. Fuller, and Y.-Z. Qian, Ann. Rev. Nucl. Part. Sci. 60, 569 (2010).
http://dx.doi.org/10.1146/annurev.nucl.012809.104524
28.
28. H. Duan and A. Friedland, Phys. Rev. Lett. 106, 091101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.091101
29.
29. H. Duan, A. Friedland, G. C. McLaughlin, and R. Surman, J. Phys. G G38, 035201 (2011).
http://dx.doi.org/10.1088/0954-3899/38/3/035201
30.
30. E. Borriello, S. Chakraborty, H.-T. Janka, L. Eligio, and A. Mirizzi, astro-ph/1310.7488.
31.
31. C. L. Fryer, ApJ 699, 409 (2009).
http://dx.doi.org/10.1088/0004-637X/699/1/409
32.
32. L. Price et al., HEAD 13, 12102 (2013).
33.
33. Y. Aso et al., Phys. Rev. D 88, 043007 (2013).
http://dx.doi.org/10.1103/PhysRevD.88.043007
34.
34. C. L. Fryer and K. C. B. New, Living Reviews in Relativity 14, 1 (2011).
35.
35. C. L. Fryer, D. E. Holz, and S. A. Hughes, ApJ 565, 430 (2004).
http://dx.doi.org/10.1086/324034
36.
36. C. L. Fryer, D. E. Holz, and S. A. Hughes, ApJ 609, 288 (2004).
http://dx.doi.org/10.1086/421040
37.
37. J. W. Murphy, C. D. Ott, and A. Burrows, ApJ 707, 1173 (2009).
http://dx.doi.org/10.1088/0004-637X/707/2/1173
38.
38. C. L. Fryer and P. A. Young, ApJ 659, 1438 (2007).
http://dx.doi.org/10.1086/513003
39.
39. E. Cappellaro, R. Evans, and M. Turatto, A&A 351, 459 (1999).
40.
40. S. van den Bergh, W. Li, and A. V. Filippenko, PASP 117, 773 (2005).
http://dx.doi.org/10.1086/431435
41.
41. W. Li, X. Wang, S. D. Van Dyk, J.-C., Cuillandre, R. J. Foley, and A. V. Filippenko, ApJ 661, 1013 (2007).
http://dx.doi.org/10.1086/516747
42.
42. S. J. Smartt, J. J. Eldridge, R. M. Crockett, and J. R. Maund, MNRAS 395, 1409 (2009b).
http://dx.doi.org/10.1111/j.1365-2966.2009.14506.x
43.
43. S. J. Smartt, ARA&A 47, 63 (2009a).
44.
44. J. P. Anderson, S. M. Habergham, P. A. James, and M. Hamuy, IAUS 279, 183 (2012).
45.
45. P. L. Kelly and R. P. Kirshner, ApJ 759, 107 (2012).
http://dx.doi.org/10.1088/0004-637X/759/2/107
46.
46. C. L. Fryer et al., PASP 119, 1211 (2007).
http://dx.doi.org/10.1086/523768
47.
47. P. Podsiadlowski, P. C. Joss, and J. J. L. Hsu, ApJ 391, 246 (1992).
http://dx.doi.org/10.1086/171341
48.
48. D. Vanbeveren, J. Van Bever, and H. Belkus, ApJ 662, L107 (2007).
http://dx.doi.org/10.1086/519454
49.
49. D. Vanbeveren, N. Mennekens, W. Van Rensbergen, and C. De Loore, A&A 552, 105 (2013).
50.
50. G. Meynet, C. Georgy, R. Hirschi, A. Maeder, P. Massey, N. Przybilla, and M.-F. Nieva, Proceedings of the 39th Liege Astrophysical Colloquium, held in Liege 12-16 July 2010, edited by G. Rauw, M. De Becker, Y. Naze, J.-M. Vreux, and P. Williams (2011), Vol. 80, pp. 266.
51.
51. D. C. Kiminki et al., ApJ 664, 1102 (2007).
http://dx.doi.org/10.1086/513709
52.
52. H. A. Kobulnicky and C. L. Fryer, ApJ 670, 747 (2008).
http://dx.doi.org/10.1086/522073
53.
53. D. C. Kiminki and H. A. Kobulnicky, ApJ 751, 4 (2012).
http://dx.doi.org/10.1088/0004-637X/751/1/4
54.
54. P. Podsiadlowski, Space Science Rev. 66, 439 (1993).
http://dx.doi.org/10.1007/BF00771097
55.
55. J. R. Maund, S. Mattila, E. Ramirez-Ruiz, and J. J. Eldridge, MNRAS 438, 1577 (2014).
http://dx.doi.org/10.1093/mnras/stt2296
56.
56. R. M. Crockett, J. J. Eldridge, S. J. Smartt, A. Pastorello, A. Gal-Yam, D. B. Fox, D. C. Leonard, M. M. Kasliwal, S. Mattila, J. R. Maund, A. W. Stephens, and I. J. Danziger, MNRAS 391, L5 (2008).
57.
57. N. Elias-Rosa, S. D. Van Dyk, W. Li, N. Morell, S. Gonzalez, M. Hamuy, A. V. Filippenko, J.-C. Cuillandre, R. J. Foley, and N. Smith, ApJ 706, 1174 (2009).
http://dx.doi.org/10.1088/0004-637X/706/2/1174
58.
58. M. Fraser et al., MNRAS 417, 1417 (2011).
http://dx.doi.org/10.1111/j.1365-2966.2011.19370.x
59.
59. S. D. Van Dyk et al., ApJ 741, L28 (2011).
http://dx.doi.org/10.1088/2041-8205/741/2/L28
60.
60. D. M. Szczgiel, J. R. Gerke, C. S. Kochanek, and K. Z. Stanek, ApJ 747, 23 (2012).
http://dx.doi.org/10.1088/0004-637X/747/1/23
61.
61. S. D. Van Dyk et al., ApJ 772, L32 (2013).
http://dx.doi.org/10.1088/2041-8205/772/2/L32
62.
62. S. D. Van Dyk et al., ApJ 756, 131 (2012).
http://dx.doi.org/10.1088/0004-637X/756/2/131
63.
63. Y. Cao et al., ApJ 775, L7 (2013).
http://dx.doi.org/10.1088/2041-8205/775/1/L7
64.
64. J. H. Groh, C. Georgy, and S. Ekström, A&A 558, L1 (2013).
65.
65. C. L. Fryer, ApJ 522, 413 (1999).
http://dx.doi.org/10.1086/307647
66.
66. A. Heger, C. L. Fryer, S. E. Woosley, N. Langer, and D. H. Hartmann, ApJ 591, 288 (2003).
http://dx.doi.org/10.1086/375341
67.
67. N. Gehrels et al., ApJ 611, 1005 (2004).
http://dx.doi.org/10.1086/422091
68.
68. F. A. Harrison et al., ApJ 770, 103 (2013).
http://dx.doi.org/10.1088/0004-637X/770/2/103
69.
69. C. L. Fryer, A. L. Hungerford, and P. A. Young, ApJ 662, L55 (2007c).
http://dx.doi.org/10.1086/519523
70.
70. A. J. Bayless, W. Even, L. H. Frey, C. L. Fryer, P. W. A. Roming, and P. A. Young, astro-ph/1401.4449 (2014).
71.
71. E. O. Ofek et al., ApJ 781, 42 (2014).
http://dx.doi.org/10.1088/0004-637X/781/1/42
72.
72. S. I. Blinnikov and O. S. Bartunov, A&A 273, 106 (1993).
73.
73. L. Frey, W. Even, D. J. Whalen, C. L. Fryer, A. L. Hungerford, C. J. Fontes, and J. Colgan, ApJS 204, 16 (2013).
http://dx.doi.org/10.1088/0067-0049/204/2/16
74.
74. K. Maeda, P. A. Mazali, and K. Nomoto, ApJ 645, 1331 (2006).
http://dx.doi.org/10.1086/504581
75.
75. D. Kasen, R. C. Thomas, F. Röpke, and S. E. Woosley, Journ. Phys. Conf. Ser. 125, 2007 (2008).
http://dx.doi.org/10.1088/1742-6596/125/1/012007
76.
76. P. A. Mazzali and L. B. Lucy, A&A 279, 447 (1993).
77.
77. B. A. Remington, R. P. Drake, and D. D. Ryutov, Rev. Mod. Phys. 78, 755 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.755
78.
78. P. B. Demorest, T. Penucci, S. M. Ransom, M. S. E. Roberts, and J. W. T. Hessels, Nature 467, 1081 (2010).
http://dx.doi.org/10.1038/nature09466
79.
79. J. M. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, ApJ 773, 11 (2013).
http://dx.doi.org/10.1088/0004-637X/773/1/11
80.
80. L. S. Finn, PRL 73, 1878 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1878
81.
81. C. D. Bailyn, R. K. Jain, P. Coppi, and J. A. Orosz, ApJ 499, 367 (1998).
http://dx.doi.org/10.1086/305614
82.
82. S. E. Thorsett and D. Chakrabarty, ApJ 512, 288 (1999).
http://dx.doi.org/10.1086/306742
83.
83. F. Özel, D. Psaltis, R. Narayan, and J. E. McClintock, ApJ 725, 1918 (2010).
http://dx.doi.org/10.1088/0004-637X/725/2/1918
84.
84. W. M. Farr et al., ApJ 741, 103 (2011).
http://dx.doi.org/10.1088/0004-637X/741/2/103
85.
85. F. Özel, D. Psaltis, R. Narayan, and V. Santos, ApJ 757, 55 (2012).
http://dx.doi.org/10.1088/0004-637X/757/1/55
86.
86. L. Kreidberg, C. D. Bailyn, W. M. Farr, and V. Kalogera, ApJ 757, 36 (2012).
http://dx.doi.org/10.1088/0004-637X/757/1/36
87.
87. B. Willems, M. Henninger, T. Levin, N. Ivanova, V. Kalogera, K. McGhee, F. X. Timmes, and C. L. Fryer, ApJ 625, 324 (2005).
http://dx.doi.org/10.1086/429557
88.
88. T. Fragos, B. Willems, V. Kalogera, N. Ivanova, G. Rockefeller, C. L. Fryer, and P. A. Young, ApJ 697, 1057 (2009).
http://dx.doi.org/10.1088/0004-637X/697/2/1057
89.
89. A. Burrows, J. Hayes, and B. A. Fryxell, ApJ 450, 830 (1995).
http://dx.doi.org/10.1086/176188
90.
90. H.-T. Janka and E. Mueller, A%A 306, 167 (1996).
91.
91. C. L. Fryer and M. S. Warren, ApJ 574, L65 (2002).
http://dx.doi.org/10.1086/342258
92.
92. C. L. Fryer and M. S. Warren, ApJ 601, 391 (2004).
http://dx.doi.org/10.1086/380193
93.
93. J. M. Blondin and A. Mezzacappa, ApJ 642, 401 (2006).
http://dx.doi.org/10.1086/500817
94.
94. S. W. Bruenn, A. Mezzacappa, W. R. Hix, J. M. Blondin, P. Marronetti, O. E. B. Messer, C. J. Dirk, and S. Yoshida, Jour. Phys. Conf. Ser. 180, 2018 (2009).
95.
95. F. Hanke, B. Müller, A. Wongwathanarat, A. Marek, and H.-T. Janka, ApJ 770, 66 (2013).
http://dx.doi.org/10.1088/0004-637X/770/1/66
96.
96. C. L. Fryer, K. Belczynski, G. Wiktorowicz, M. Dominik, V. Kalogera, and D. E. Holz, ApJ 749, 91 (2012).
http://dx.doi.org/10.1088/0004-637X/749/1/91
97.
97. K. Belczynski, G. Wiktorowicz, C. L. Fryer, D. E. Holz, and V. Kalogera, ApJ 757, 91 (2012).
http://dx.doi.org/10.1088/0004-637X/757/1/91
98.
98. C. L. Fryer, New Astron. 50, 492 (2006a).
http://dx.doi.org/10.1016/j.newar.2006.06.052
99.
99. J. Abadie et al., Class. Quant. Gravity 27, 173001 (2010).
http://dx.doi.org/10.1088/0264-9381/27/17/173001
100.
100. M. Dominik et al., ApJ 759, 52 (2012).
http://dx.doi.org/10.1088/0004-637X/759/1/52
101.
101. M. Hannam, D. A. Brown, S. Fairhurst, C. L. Fryer, and I. W. Harry, ApJ 766, L14 (2013).
http://dx.doi.org/10.1088/2041-8205/766/1/L14
102.
102. R. A. Chevalier, ApJ 258, 790 (1982a).
http://dx.doi.org/10.1086/160126
103.
103. R. A. Chevalier, ApJ 259, 302 (1982b).
http://dx.doi.org/10.1086/160167
104.
104. O. Krause et al., Science 308, 1604 (2005).
http://dx.doi.org/10.1126/science.1112035
105.
105. R. A. Chevalier, J. M. Blondin, and R. T. Emmering, ApJ 444, 312 (1992).
http://dx.doi.org/10.1086/175606
106.
106. J. M. Blondin, P. Lundqvist, and R. A. Chevalier, ApJ 472, 257 (1996).
http://dx.doi.org/10.1086/178060
107.
107. R. D. Blandford and J. P. Ostriker, ApJ 221, L29 (1978).
http://dx.doi.org/10.1086/182658
108.
108. A. R. Bell, MNRAS 182, 147 (1978a).
109.
109. A. R. Bell, MNRAS 182, 443 (1978b).
110.
110. F. C. Jones and D. C. Ellison, Space Science Rev. 58, 259 (1991).
http://dx.doi.org/10.1007/BF01206003
111.
111. D. C. Ellison, E. G. Berezhko, and M. G. Baring, ApJ 540, 292 (2000).
http://dx.doi.org/10.1086/309324
112.
112. S. P. Reynolds, ARA&A 46, 89 (2008).
113.
113. F. Aharonian et al., A&A 437, L7 (2005).
114.
114. E. Aliu et al., ApJ 770, 93 (2013).
http://dx.doi.org/10.1088/0004-637X/770/2/93
115.
115. Q. Yuan, S. Liu, Z. Fan, X. Bi, and C. L. Fryer, ApJ 735, 120 (2011).
http://dx.doi.org/10.1088/0004-637X/735/2/120
116.
116. I. Telezhinsky, V. V. Dwarkadas, and M. Pohl, A&A 552, 102 (2013).
117.
117. G. Morlino, P. Blasi, R. Bandiera, E. Amato, and D. Caprioli, ApJ 768, 179 (2013).
http://dx.doi.org/10.1088/0004-637X/768/2/148
118.
118. A. M. Bykov, M. A. Malkov, J. C. Raymond, A. M. Krassilchtchikov, and A. E. Valdimirov, Space Sci. Rev. 178, 599 (2013).
http://dx.doi.org/10.1007/s11214-013-9984-7
119.
119. F. A. Aharonian, Astroparticle Phys. 43, 71 (2013).
http://dx.doi.org/10.1016/j.astropartphys.2012.08.007
120.
120. U. Hwang and J. M. Laming, ApJ 746, 130 (2012).
http://dx.doi.org/10.1088/0004-637X/746/2/130
121.
121. M. Obergaulinger, A. F. Iyudin, E. Müller, and G. F. Smoot, MNRAS, advanced accces 18pp (2013).
122.
122. C. I. Ellinger, G. Rockefeller, C. L. Fryer, P. A. Young, and S. Park, astro-ph/1305.4137 (2013).
123.
123. R. A. Chevalier and J. Oishi, ApJ 593, L23 (2003).
http://dx.doi.org/10.1086/377572
124.
124. R. A. Fesen and R. H. Becker, ApJ 371, 621 (1991).
http://dx.doi.org/10.1086/169926
125.
125. P. A. Young et al., ApJ 640, 891 (2006).
http://dx.doi.org/10.1086/500108
126.
126. B. Grefenstette et al., Nature 506, 339 (2014).
http://dx.doi.org/10.1038/nature12997
127.
127. G. Magkotsios, F. X. Timmes, A. L. Hungerford, C. L. Fryer, P. A. Young, and M. Wiescher, ApJS 191, 66 (2010).
http://dx.doi.org/10.1088/0067-0049/191/1/66
128.
128. C. L. Fryer and A. Heger, ApJ 541, 1033 (2000).
http://dx.doi.org/10.1086/309446
129.
129. C. L. Fryer, P. A. Young, and A. L. Hungerford, ApJ 650, 1028 (2006b).
http://dx.doi.org/10.1086/506250
130.
130. T. C. Beers, G. W. Preston, and S. A. Shectman, AJ 90, 2089 (1985).
http://dx.doi.org/10.1086/113917
131.
131. S. G. Ryan, J. E. Norris, and M. S. Bessell, AJ 102, 303 (1991).
http://dx.doi.org/10.1086/115878
132.
132. T. C. Beers, G. W. Preston, and S. A. Shectman, AJ 103, 1987 (1992).
http://dx.doi.org/10.1086/116207
133.
133. Aoki et al., AJ 145, 13 (2013).
http://dx.doi.org/10.1088/0004-6256/145/1/13
134.
134. A. E. García Pérez et al., ApJ 767, L9 (2013).
http://dx.doi.org/10.1088/2041-8205/767/1/L9
135.
135. Y. S. Lee et al., AJ 146, 132 (2013).
http://dx.doi.org/10.1088/0004-6256/146/5/132
136.
136. V. M. Placco, ApJ 781, 40 (2014).
http://dx.doi.org/10.1088/0004-637X/781/1/40
137.
137. L.-C. Deng et al., Research in Astronomy and Astrophysics 12, 7 (2012).
138.
138. Y. Fenner, J. X. Prochaska, and B. K. Gibson, ApJ 606, 116 (2004).
http://dx.doi.org/10.1086/382781
139.
139. T. Nakamura, H. Umeda, K. Nomoto, F.-K. Thielemann, and A. Burrows, ApJ 517, 193 (1999).
http://dx.doi.org/10.1086/307167
140.
140. A. Heger and S. E. Woosley, ApJ 567, 532 (2002).
http://dx.doi.org/10.1086/338487
141.
141. S. G. Ryan, J. E. Norris, and T. C. Beers, ApJ 471, 254 (1996).
http://dx.doi.org/10.1086/177967
142.
142. Y.-Z. Qian and G. J. Wasserburg, ApJ 567, 515 (2002).
http://dx.doi.org/10.1086/338277
143.
143. D. Argast, M. Samland, F.-K. Thieleman, and Y.-Z Qian, A&A 416, 997 (2004).
144.
144. Y.-Z. Qian, AIP Conf 87, 5805 (2012).
145.
145. E. Anders and N. Grevesse, Geochimica et Cosmochimica Acta 53, 197 (1989).
http://dx.doi.org/10.1016/0016-7037(89)90286-X
146.
146. S. E. Woosley, D. H. Hartmann, R. D. Hoffman, and W. C. Haxton, ApJ 356, 272 (1990).
http://dx.doi.org/10.1086/168839
147.
147. T. Hayakawa, K. Nakamura, T. Kajino, S. Chiba, N. Iwamoto, M. K. Cheoun, and G. J. Mathews, ApJ 779, L9 (2013).
http://dx.doi.org/10.1088/2041-8205/779/1/L9
148.
148. A. Levinson and D. Eichler, ApJ 418, 386 (1993).
http://dx.doi.org/10.1086/173397
149.
149. S. E. Woosley and R. D. Hoffman, ApJ 395, 202 (1992).
http://dx.doi.org/10.1086/171644
150.
150. B. S. Meyer, G. J. Mathews, W. M. Howard, S. E. Woosley, and R. D. Hoffman, ApJ 399, 656 (1992).
http://dx.doi.org/10.1086/171957
151.
151. W. M. Howard, S. Goriely, M. Rayet, and M. Arnould, ApJ 417, 713 (1993).
http://dx.doi.org/10.1086/173350
152.
152. K. Takahashi, J. Witti, and H.-T. Janka, A&A 286, 857 (1994).
153.
153. S. E. Woosley, G. J. Mathews, J. R. Wilson, R. D. Hoffman, and B. S. Meyer, ApJ 433, 229 (1994).
http://dx.doi.org/10.1086/174638
154.
154. Y. Z. Qian and S. E. Woosley, ApJ 471, 331 (1996).
http://dx.doi.org/10.1086/177973
155.
155. T. A. Thompson, A. Burrows, and B. S. Meyer, ApJ. 562, 887 (2001).
http://dx.doi.org/10.1086/323861
156.
156. T. K. Suzuki and S. Nagataki, ApJ 628, 914 (2005).
http://dx.doi.org/10.1086/430847
157.
157. B. D. Metzger, T. A. Thompson, and E. Quataert, ApJ 659, 561 (2007).
http://dx.doi.org/10.1086/512059
158.
158. G. M. Fuller and B. S. Meyer, ApJ 453, 792 (1995).
http://dx.doi.org/10.1086/176442
159.
159. G. C. McLaughlin, G. M. Fuller, and J. R. Wilson, ApJ 472, 440 (1996).
http://dx.doi.org/10.1086/178077
160.
160. B. S. Meyer, G. C. McLaughlin, and G. M. Fuller, Phys. Rev. C 58, 3698 (1998).
http://dx.doi.org/10.1103/PhysRevC.58.3696
161.
161. G. M. Fuller, AIPC 412, 160 (1997).
162.
162. J. Fetter, G. C. McLaughlin, A. B. Balantekin, and G. M. Fuller, Astropart. Phys. 18, 433 (2003).
http://dx.doi.org/10.1016/S0927-6505(02)00156-1
163.
163. X. D. Xu, B. Sun, Z. M. Niu, Z. Li, Y.-Z. Qian, and J. Meng, Phys. Rev. C 87, 5805.
164.
164. C. L. Fryer, F. Herwig, A. L. Hungerford, and F. X. Timemes, ApJ 646, L131 (2006c).
http://dx.doi.org/10.1086/507071
165.
165. J. Dexter and D. Kasen, ApJ 772, 30 (2013).
http://dx.doi.org/10.1088/0004-637X/772/1/30
166.
166. P. A. Young and C. L. Fryer, ApJ 550, 357 (2007).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4870404
Loading
/content/aip/journal/adva/4/4/10.1063/1.4870404
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4870404
2014-04-02
2014-08-23

Abstract

Supernovae are Nature's high-energy, high density laboratory experiments, reaching densities in excess of nuclear densities and temperatures above 10 MeV. Astronomers have built up a suite of diagnostics to study these supernovae. If we can utilize these diagnostics, and tie them together with a theoretical understanding of supernova physics, we can use these cosmic explosions to study the nature of matter at these extreme densities and temperatures. Capitalizing on these diagnostics will require understanding a wide range of additional physics. Here we review the diagnostics and the physics neeeded to use them to learn about the supernova engine, and ultimate nuclear physics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4870404.html;jsessionid=hpi17j5q23n2.x-aip-live-03?itemId=/content/aip/journal/adva/4/4/10.1063/1.4870404&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Observational constraints of stellar collapse: Diagnostic probes of nature's extreme matter experiment
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4870404
10.1063/1.4870404
SEARCH_EXPAND_ITEM