1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhanced 2.7 μm emission from Er3+ doped oxyfluoride tellurite glasses for a diode-pump mid-infrared laser
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/4/10.1063/1.4870581
1.
1. G. M. Hale and M. R. Querry, Appl. Opt. 12, 555 (1973).
http://dx.doi.org/10.1364/AO.12.000555
2.
2. A. Rogalski and K. Chrzanowski, Opto-electron. Rev. 10, 111 (2002).
3.
3. M. Pollnau and S. D. Jackson, IEEE J. Select. Topics Quantum Electron. 7, 30 (2001).
http://dx.doi.org/10.1109/2944.924006
4.
4. B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, Opt. Mater. 31, 1658 (2009).
http://dx.doi.org/10.1016/j.optmat.2009.03.015
5.
5. H. Lin, D. Q. Chen, and Y. S. Wang, Opt. Lett. 36, 1815 (2011).
http://dx.doi.org/10.1364/OL.36.001815
6.
6. Z. H. Jiang and Q. Y. Zhang, Prog. Mater. Sci. 61, 144 (2014).
http://dx.doi.org/10.1016/j.pmatsci.2013.12.001
7.
7. R. R. Xu, Y. Tian, L. L. Hu, and J. J. Zhang, J. Appl. Phys. 111, 033524 (2012).
http://dx.doi.org/10.1063/1.3681289
8.
8. Y. Y. Guo, M. Li, Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, J. Appl. Phys. 110, 013512 (2011).
http://dx.doi.org/10.1063/1.3601353
9.
9. A. X. Lin, A. Ryasnyanskiy, and J. Toulouse, Opt. Lett. 36, 740 (2011).
http://dx.doi.org/10.1364/OL.36.000740
10.
10. Y. Y. Guo, M. Li, L. L. Hu, and J. J. Zhang, J. Phys. Chem. A 116, 5571 (2012).
http://dx.doi.org/10.1021/jp301582b
11.
11. G. S. Ofel, J. Chem. Phys. 37, 511 (1962).
http://dx.doi.org/10.1063/1.1701366
12.
12. B. R. Judd, Phys. Rev. 127, 750 (1962).
http://dx.doi.org/10.1103/PhysRev.127.750
13.
13. M. J. Weber, Phys. Rev. 157, 262 (1967).
http://dx.doi.org/10.1103/PhysRev.157.262
14.
14. W. J. Zhang, Q. J. Chen, Q. Qian, and Q. Y. Zhang, J. Am. Ceram. Soc. 95, 663 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2011.04809.x
15.
15. K. Tsukuma, N. Yamada, S. Kondo, K. Honda, and H. Segawa, J. Non-Cryst. Solids 127, 191 (1991).
http://dx.doi.org/10.1016/0022-3093(91)90142-S
16.
16. M. Abril, J. Méndez-Ramos, I. R. Martín, U. R. Rodríguez-Mendoza, V. Lavín, A. Delgado-Torres, and V. D. Rodríguez, J. Appl. Phys. 95, 5271 (2004).
http://dx.doi.org/10.1063/1.1707204
17.
17. H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, J. Non-Cryst. Solids 240, 66 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00706-6
18.
18. X. Feng, S. Tanabe, and T. Hanada, J. Non-Cryst. Solids 281, 48 (2001).
http://dx.doi.org/10.1016/S0022-3093(00)00429-4
19.
19. M. D. O’Donnell, C. A. Miller, D. Furniss, V. K. Tikhomirov, and A. B. Seddonet, J. Non-Cryst. Solids 331, 48 (2003).
http://dx.doi.org/10.1016/j.jnoncrysol.2003.08.081
20.
20. L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, J. Appl. Phys. 110, 083111 (2011).
http://dx.doi.org/10.1063/1.3651399
21.
21. K. Kobayashi, J. Non-Cryst. Solids 316, 403 (2003).
http://dx.doi.org/10.1016/S0022-3093(02)01907-5
22.
22. Y. Y. Guo, Y. Y. Ma, F. F. Huang, Y. P. Peng, L. Y. Zhang, and J. J. Zhang, Spectrochim. Acta A 111, 150 (2013).
http://dx.doi.org/10.1016/j.saa.2013.03.089
23.
23. G. X. Bai, J. Ding, L. L. Tao, K. F. Li, L. L. Hu, and Y. H. Tsang, J. Non-Cryst. Solids 358, 3403 (2012).
http://dx.doi.org/10.1016/j.jnoncrysol.2012.08.016
24.
24. V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, and T. Cardinal, J. Non-Cryst. Solids 325, 85 (2003).
http://dx.doi.org/10.1016/S0022-3093(03)00313-2
25.
25. N. Jaba, A. Kanoun, H. Mejri, A. Selmi, S. Alaya, and H. Maaref, J. Phys.: Condens. Matter 12, 4523 (2000).
http://dx.doi.org/10.1088/0953-8984/12/20/307
26.
26. Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, Opt. Mater. 34, 308 (2011).
http://dx.doi.org/10.1016/j.optmat.2011.09.004
27.
27. Y. G. Choi, K. H. Kim, B. J. Lee, Y. B. Shin, Y. S. Kim, and J. Heo, J. Non-Cryst. Solids 278, 137 (2000).
http://dx.doi.org/10.1016/S0022-3093(00)00331-8
28.
28. X. L. Zou and T. Izumitani, J. Non-Cryst. Solids 162, 68 (1993).
http://dx.doi.org/10.1016/0022-3093(93)90742-G
29.
29. B. Moine, A. Brenier, and C. Pedrini, IEEE J. Quantum Electron. 25, 88 (1989).
http://dx.doi.org/10.1109/3.16245
30.
30. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, Opt. Lett. 21, 1594 (1996).
http://dx.doi.org/10.1364/OL.21.001594
31.
31. Y. F. Zheng, B. J. Chen, H. Y. Zhong, J. S. Sun, L. H. Cheng, X. P. Li, J. S. Zhang, Y. Tian, W. L. Lu, J. Wan, T. T. Yu, L. B. Huang, H. Q. Yu, and H. Lin, J. Am. Ceram. Soc. 94, 1766 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04323.x
32.
32. W. J. Miniscalco and R. S. Quimby, Opt. Lett. 16, 258 (1991).
http://dx.doi.org/10.1364/OL.16.000258
33.
33. S. Hubert, D. Meichenin, B. W. Zhou, and F. Auzel, J. Lumin. 50, 7 (1991).
http://dx.doi.org/10.1016/0022-2313(91)90004-F
34.
34. J. Koetke and G. Huber, Appl. Phys. B 61, 151 (1995).
http://dx.doi.org/10.1007/BF01090936
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4870581
Loading
/content/aip/journal/adva/4/4/10.1063/1.4870581
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4870581
2014-04-02
2014-10-01

Abstract

The influence of fluoride and shielding gas (O or Ar) on the physical and spectroscopic properties of Er3+ doped TeO-ZnO-ZnF glass system is investigated. The larger electronegativity of F than O accounts for the gradual decrease of refractive index, density, and J-O parameters with increasing ZnF. An analysis on Fourier transform infrared transmission spectra reveals that the absorption coefficient of OH around 3 μm as low as 0.247 cm−1 can be achieved when 30 mol% ZnF containing sample is treated with Ar gas during glass melting process. The reduction of OH groups combined with the low multiphonon relaxation rate (207 s−1) contributes to the enhanced emissions at 1.5 and 2.7 μm, along with prolonged lifetimes of 4I and 4I levels. A high branching ratio (17.95%) corresponding to the Er3+: 4I4I transition, the large absorption and emission cross section (0.44 × 10−20 cm2 and 0.45 × 10−20 cm2), and good gain cross section demonstrate that oxyfluoride tellurite glass could be a promising material for a diode-pump 2.7 μm fiber laser.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4870581.html;jsessionid=cffahd0l5f2i.x-aip-live-03?itemId=/content/aip/journal/adva/4/4/10.1063/1.4870581&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced 2.7 μm emission from Er3+ doped oxyfluoride tellurite glasses for a diode-pump mid-infrared laser
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4870581
10.1063/1.4870581
SEARCH_EXPAND_ITEM