Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
2. B. Dlubak, M. B. Martin, C. Deranlot, B. Servet, S. Xavier, R. Mattana, M. Sprinkle, C. Berger, W. A. De Heer, F. Petroff, A. Anane, P. Seneor, and A. Fert, Nature Phys. 8, 557 (2012).
3. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571 (2007).
4. M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
5. M. Koch, F. Ample, C. Joachim, and L. Grill, Nature. Nano Tech. 7, 713 (2012).
6. A. López-Bezanilla, F. Triozon, and S. Roche, Nano. Lett. 9, 2537 (2009).
7. T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, Phys. Rev. Lett. 98, 196803 (2007).
8. F. Cervantes-Sodi, G. Csányi, S. Piscanec, and A. C. Ferrari, Phys. Rev. B. 77, 165427 (2008).
9. J. Hong, E. Bekyarova, P. Liang, W. A. de Heer, R. C. Haddon, and S. Khizroev, Scientific Reports 2, 1 (2012).
10. L. Ćirić, A. Sienkiewicz, R. Gaa, J. Jaćimović, C. Vâju, A. Magrez, and L. Forro, Phys. Rev. B. 86, 195139 (2012).
11. A. Akbari-Sharbaf, M. G. Cottam, and G. J. Fanchini, Appl. Phys. Lett. 114, 024309 (2013).
12. C. Su, M. Acik, K. Takai, J. Lu, S. Hao, Y. Zheng, P. Wu, Q. Bao, T. Enoki, Y. J. Chabal, and K. P. Loh, Nature Comm. 3, 1 (2012).
13. J. Kausteklis, P. Cevc, D. Arčon, L. Nasi, D. Pontiroli, M. Mazzani, and M. Riccò, Phys. Rev. B. 84, 125406 (2011).
14. A. M. Panich, A. I. Shames, and N. A. Sergeev, Appl. Magn. Reson. 44, 107 (2013).
15. H. Lv, R. Terrones, M. Terrones, and M. S. Dresselhaus, Rep. Prog. Phys. 75, 062501 (2012).
16. E. Bekyarova, S. Sarkar, S. Niyogi, M. E. Itkis, and R. C. Haddon, J. Phys. D: Appl. Phys. 45, 154009 (2012).
17. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature (London) 458, 872 (2009).
18. A. Sinitskii, A. Dimiev, D. A. Corley, A. A. Fursina, D. V. Kosynkin, and J. M. Tour, ACS Nano 4, 1949 (2010).
19. J. van Tol, L. C. Brunel, and R. J. A. Wylde, Rev. Sci. Instrum. 76, 074101 (2005).
20. S. S. Rao, A. Stesmans, K. Keunen, D. V. Kosynkin, A. Higginbotham, and J. M. Tour, Appl. Phys. Lett. 98, 083116 (2011), references therein.
21. S. S. Rao, A. Stesmans, D. V. Kosynkin, A. Higginbotham, and J. M. Tour, New. Journal of Physics 13, 113004 (2011), references therein.
22. A. Sinitskii, A. A. Fursina, D. V. Kosynkin, A. L. Higginbotham, D. Natelson, and J. M. Tour, Appl. Phys. Lett. 95, 253108 (2009).
23. D. Joung, S. I. Khondaker, and E. Shklovskii, Phys. Rev. B. 86, 235423 (2012).
24. M. Y. Han, J. C. Brant, and P. Kim, Phys. Rev. Lett. 104, 056801 (2010).
25. D. Gunlycke and C. T. White, Phys. Rev. B. 81, 075434 (2010).
26. T. Shimizu, J. Haruyama, D. C. Marcano, D. V. Kosinkin, J. M. Tour, K. Hirose, and K. Suenaga, Nat. Nanotechnol. 249, 45 (2010).
27. D. V. Kosynkin, W. Lu, A. Sinitskii, G. Pera, Z. Sun, and J. M. Tour, ACS Nano 5, 968 (2011).
28. A. P. Alegaonkar, A. Kumar, S. H. Patil, K. R. Patil, S. K. Pardeshi, and P. S. Alegaonkar, J. Phys. Chem. C. 117, 27105 (2013).
29. S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini, and G. J. Mariotto, Appl. Phys. Lett. 81, 2626 (1997).
30.See Supplementary Material Document at for Lorentzian line shape fits along with the observed and difference spectra for all the experimental ESR signals resulted from evacuation, NH3 adsorption and re-evacuation recorded; also for demonstration of the non-applicability of single exponential fit to the ESE signal. [Supplementary Material]
31. C. F. M. Clewett, J. Kombarakkaran, and T. Pietra, Phys. Stat. Sol. (b). 243, 3242 (2006).
32. S. S. Rao, A. Stesmans, J. van Tol, D. V. Kosynkin, A. Higginbotham-Duque, W. Lu, A. Sinitskii, and J. M. Tour, ACS Nano 6, 7615 (2012).
33. J. Balakrishnan, G. K. W. Koon, M. Jaiswal, A. H. C. Neto, and B. Özyilmaz, Nature Phys. 9, 284 (2013).
34. M. A. Augustyniak-Jabłokow, K. Tadyszak, M. Maćowiak, and S. Lijewski, Chem. Phys. Lett. 557, 118 (2013).
35. R. Blinc, D. Arčon, P. Cevcy, I. Pocsikz, M. Koosz, Z. Trontelj, and Z. Jaglicic, J. Phys. Cond. Matt. 10, 6813 (1998).
36. C. F. M. Clewett, P. Li, and T. Pietrass, J. Phys. Chem. C. 111, 6263 (2007).
37. T.-Y. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S. R. Ali, A. Pachoud, M. Zeng, M. Popinciuc, G. Guütherodt, B. Beschoten, and B. Ozyilmaz, Phys. Rev. Lett. 107, 047206 (2011).
38. S. S. Rao, S. N. Jammalamadaka, A. Stesmans, V. V. Moshchalkov, J. van Tol, D. V. Kosynkin, A. Higginbotham, and J. M. Tour, Nano Lett. 12, 1210 (2012).
39. A. G. Maryasov, and M. K. Bowman, J. of Mag. Res. 179, 120 (2006).
40. F. Gerson and W. Huber, Electron Spin Resonance Spectroscopy of Organic Radicals (Wiley-VCH, New York, 2003).
41. L. V. Kulik, W. Lubitz, and J. Messinger, Biochemistry. 44, 9368 (2005), references therein.
42. H. M. McConnell, J. Chem. Phys. 24, 632 (1956).
43. M. Ricco, D. Pontiroli, M. Mazzani, M. Choucair, A. J. Stride, and O. V. Yazyev, Nano Lett. 11, 4919 (2011).

Data & Media loading...


Article metrics loading...



Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd