Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Nicoul, U. Shymanovich, A. Tarasevitch, D. Von der Linde, and K. Sokolowski-Tinten, Appl. Phys. Lett. 98, 191902 (2011).
2. M. Nishikino, K. Sato, N. Hasegawa, M. Ishino, S. Ohshima, Y. Okano, T. Kawachi, H. Numasaki, T. Teshima, and H. Nishimura, Rev. Sci. Instrum. 81, 026107 (2010).
3. K. Vaughan, A. Moore, V. Smalyuk, K. Wallace, D. Gate, S. G. Glendinning, S. McAlpin, H. S. Park, C. Sorce, and R. M. Stevenson, High Energy Density Physics (2013).
4. J. A. Cobble, T. E. Tierney, and J. Abdallah, Jr., J. Appl. Phys. 102, 023303 (2007).
5. Ch. Ziener, I. Uschmann, G. Stobrawa, Ch. Reich, P. Gibbon, T. Feurer, A. Morak, S. Dusterer, H. Schwoerer, E. Forster, and R. Sauerbrey, Phys. Rev. E 65, 66411 (2002).
6. M. Silies et al., Appl. Phys. A 96, 59 (2009).
7. C. Reich, P. Gibbon, I. Uschmann, and E. Forster, Phys. Rev. Lett. 84, 4846 (2000).
8. D. Salzmann, Ch. Reich, I. Uschmann, E. Forster, and P. Gibbon, Phys. Rev. E 65, 036402 (2002).
9. W. L. Kruer, The Physics of Laser–Plasma Interactions (Westview, New York, 2003).
10. D. Riley, F. Y. Khattak, O. A. M. B. Percie du Sert, R. J. Clarke, E. J. Divall, M. Edwards, P. S. Foster, C. J. Hooker, A. J. Langley, P. Mistry, D. Neely, J. Smith, C. Spindloe, G. J. Tallents, and M. Tolley, J. Quant. Spect. & Rad. Transf. 99, 537 (2006).
11. M. Silies, S. Linden, H. Witte, and H. Zacharias, Appl. Phys. B 87, 623 (2007).
12. D. C. Eder, G. Pretzler, E. Fill, K. Eidmann, and A. Seimann, Appl. Phys. B: Lasers Opt. 70, 211 (2000).
13. D. Riley, J. J. Angulo-Gareta, F. Y. Khattak, M. J. Lamb, P. S. Foster, E. J. Divall, C. J. Hooker, A. J. Langley, R. J. Clarke, and D. Neely, Phys. Rev. E 71, 016406 (2005).
14. F. Y. Khattak, E. Garcia Saiz, T. Dzelzainis, D. Riley, and Z. Zhai, Appl. Phys. Lett. 90, 081502 (2007).
15. S. Z. Glenzer, Rev. Mod. Phys. 81, 1625 (2009).
16. D. C. Swift, Rev. Sci. Instrum. 79, 013906 (2008).
17. B. Hou, J. A. Nees, W. Theobald, G. A. Mourou, L. M. Chen, J. C. Kieffer, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
18. L. M. Chen et al., Phys. Plasmas 11, 4439 (2004).
19. K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, Opt. Exp. 16, 12650 (2008).
20. L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, Phys. Rev. Lett. 100, 045004 (2008).
21. V. Arora, S. R. Kumbhare, P. A. Naik, and P. D. Gupta, Rev. Sci. Instrum. 71, 2644 (2000).
22. V. Arora, H. S. Vora, J. A. Chakera, M. Tayyab, P. A. Naik, and P. D. Gupta, J. Instrum. 8, 01010 (2013).
23. K. Eidmann, U. Andiel, F. Pisani, P. Hakel, R. C. Mancini, G. C. Jumkel Vives, J. Abdallah, and K. Witte, J. Quant. Spectrosc. Radiat. Transf. 81, 133 (2003).
24. F. N. Beg, A. Bell, A. Dangor, C. Danson, A. Fews, M. Glinsky, B. Hammel, P. Lee, P. Norreys, and M. Tatarakis, Phys. Plasmas 4, 447 (1997).
25. B. S. Rao, V. Arora, P. A. Naik, and P. D. Gupta, Phys. Plasmas 19, 113118 (2012).
26. F. Pisani, U. Andiel, K. Eidmann, K. Witte, I. Uschmann, A. Morak, E. Forster, and R. Sauerbrey, Appl. Phys. Lett. 84, 2772 (2005).
27. H. Nakano, A. A. Andreev, and J. Limpouch, Appl. Phys. B 79, 469 (2004).
28. V. Arora, S. Bagchi, M. Gupta, J. A. Chakera, A. Gupta, P. A. Naik, P. Chaddah, and P. D. Gupta, J. Appl. Phys. 114, 023302 (2013).

Data & Media loading...


Article metrics loading...



We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I ∝ I β) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 1014 – 8 × 1017. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η = 1.2 × 10−5, η = 3.1 × 10−5, η = 2.7 × 10−5, η = 1.9 × 10−5. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd