Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/4/10.1063/1.4870946
1.
1. M. Nicoul, U. Shymanovich, A. Tarasevitch, D. Von der Linde, and K. Sokolowski-Tinten, Appl. Phys. Lett. 98, 191902 (2011).
http://dx.doi.org/10.1063/1.3584864
2.
2. M. Nishikino, K. Sato, N. Hasegawa, M. Ishino, S. Ohshima, Y. Okano, T. Kawachi, H. Numasaki, T. Teshima, and H. Nishimura, Rev. Sci. Instrum. 81, 026107 (2010).
http://dx.doi.org/10.1063/1.3302827
3.
3. K. Vaughan, A. Moore, V. Smalyuk, K. Wallace, D. Gate, S. G. Glendinning, S. McAlpin, H. S. Park, C. Sorce, and R. M. Stevenson, High Energy Density Physics (2013).
http://dx.doi.org/10.1016/j.hedp.2013.05.006
4.
4. J. A. Cobble, T. E. Tierney, and J. Abdallah, Jr., J. Appl. Phys. 102, 023303 (2007).
http://dx.doi.org/10.1063/1.2745246
5.
5. Ch. Ziener, I. Uschmann, G. Stobrawa, Ch. Reich, P. Gibbon, T. Feurer, A. Morak, S. Dusterer, H. Schwoerer, E. Forster, and R. Sauerbrey, Phys. Rev. E 65, 66411 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.066411
6.
6. M. Silies et al., Appl. Phys. A 96, 59 (2009).
http://dx.doi.org/10.1007/s00339-009-5172-8
7.
7. C. Reich, P. Gibbon, I. Uschmann, and E. Forster, Phys. Rev. Lett. 84, 4846 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4846
8.
8. D. Salzmann, Ch. Reich, I. Uschmann, E. Forster, and P. Gibbon, Phys. Rev. E 65, 036402 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.036402
9.
9. W. L. Kruer, The Physics of Laser–Plasma Interactions (Westview, New York, 2003).
10.
10. D. Riley, F. Y. Khattak, O. A. M. B. Percie du Sert, R. J. Clarke, E. J. Divall, M. Edwards, P. S. Foster, C. J. Hooker, A. J. Langley, P. Mistry, D. Neely, J. Smith, C. Spindloe, G. J. Tallents, and M. Tolley, J. Quant. Spect. & Rad. Transf. 99, 537 (2006).
http://dx.doi.org/10.1016/j.jqsrt.2005.05.043
11.
11. M. Silies, S. Linden, H. Witte, and H. Zacharias, Appl. Phys. B 87, 623 (2007).
http://dx.doi.org/10.1007/s00340-007-2665-z
12.
12. D. C. Eder, G. Pretzler, E. Fill, K. Eidmann, and A. Seimann, Appl. Phys. B: Lasers Opt. 70, 211 (2000).
http://dx.doi.org/10.1007/s003400050034
13.
13. D. Riley, J. J. Angulo-Gareta, F. Y. Khattak, M. J. Lamb, P. S. Foster, E. J. Divall, C. J. Hooker, A. J. Langley, R. J. Clarke, and D. Neely, Phys. Rev. E 71, 016406 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.016406
14.
14. F. Y. Khattak, E. Garcia Saiz, T. Dzelzainis, D. Riley, and Z. Zhai, Appl. Phys. Lett. 90, 081502 (2007).
http://dx.doi.org/10.1063/1.2645310
15.
15. S. Z. Glenzer, Rev. Mod. Phys. 81, 1625 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1625
16.
16. D. C. Swift, Rev. Sci. Instrum. 79, 013906 (2008).
http://dx.doi.org/10.1063/1.2833824
17.
17. B. Hou, J. A. Nees, W. Theobald, G. A. Mourou, L. M. Chen, J. C. Kieffer, and C. C. Chamberlain, Appl. Phys. Lett. 84, 2259 (2004).
http://dx.doi.org/10.1063/1.1688985
18.
18. L. M. Chen et al., Phys. Plasmas 11, 4439 (2004).
http://dx.doi.org/10.1063/1.1781625
19.
19. K. Hatanaka, T. Ida, H. Ono, S. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, Opt. Exp. 16, 12650 (2008).
http://dx.doi.org/10.1364/OE.16.012650
20.
20. L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, Phys. Rev. Lett. 100, 045004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.045004
21.
21. V. Arora, S. R. Kumbhare, P. A. Naik, and P. D. Gupta, Rev. Sci. Instrum. 71, 2644 (2000).
http://dx.doi.org/10.1063/1.1150670
22.
22. V. Arora, H. S. Vora, J. A. Chakera, M. Tayyab, P. A. Naik, and P. D. Gupta, J. Instrum. 8, 01010 (2013).
http://dx.doi.org/10.1088/1748-0221/8/01/P01010
23.
23. K. Eidmann, U. Andiel, F. Pisani, P. Hakel, R. C. Mancini, G. C. Jumkel Vives, J. Abdallah, and K. Witte, J. Quant. Spectrosc. Radiat. Transf. 81, 133 (2003).
http://dx.doi.org/10.1016/S0022-4073(03)00067-0
24.
24. F. N. Beg, A. Bell, A. Dangor, C. Danson, A. Fews, M. Glinsky, B. Hammel, P. Lee, P. Norreys, and M. Tatarakis, Phys. Plasmas 4, 447 (1997).
http://dx.doi.org/10.1063/1.872103
25.
25. B. S. Rao, V. Arora, P. A. Naik, and P. D. Gupta, Phys. Plasmas 19, 113118 (2012).
http://dx.doi.org/10.1063/1.4754598
26.
26. F. Pisani, U. Andiel, K. Eidmann, K. Witte, I. Uschmann, A. Morak, E. Forster, and R. Sauerbrey, Appl. Phys. Lett. 84, 2772 (2005).
http://dx.doi.org/10.1063/1.1695634
27.
27. H. Nakano, A. A. Andreev, and J. Limpouch, Appl. Phys. B 79, 469 (2004).
http://dx.doi.org/10.1007/s00340-004-1582-7
28.
28. V. Arora, S. Bagchi, M. Gupta, J. A. Chakera, A. Gupta, P. A. Naik, P. Chaddah, and P. D. Gupta, J. Appl. Phys. 114, 023302 (2013).
http://dx.doi.org/10.1063/1.4813095
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4870946
Loading
/content/aip/journal/adva/4/4/10.1063/1.4870946
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4870946
2014-04-08
2016-12-07

Abstract

We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I ∝ I β) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 1014 – 8 × 1017. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η = 1.2 × 10−5, η = 3.1 × 10−5, η = 2.7 × 10−5, η = 1.9 × 10−5. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4870946.html;jsessionid=C3rexIIO55x-uGgaOojuU1zV.x-aip-live-06?itemId=/content/aip/journal/adva/4/4/10.1063/1.4870946&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/4/10.1063/1.4870946&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/4/10.1063/1.4870946'
Right1,Right2,Right3,