Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Gerben Doornbos and Matthias Passlack, IEEE Electr. Dev. Lett. 31(10), 1110 (2010).
2. S. W. Chang et al., IEDM 2013.
3. P. D. Ye, J. Vac. Sci Technol. A 26(4), 697 (Jul/Aug, 2008).
4. Han Zhao, Jeff Huang, Yen-Ting Chen, Jung Hwan Yum, Yanzhen Wang, Fei Zhou, Fei Xue, and Jack C. Lee, Appl. Phys. Lett. 95, 253501 (2009).
5. H. D. Trinh, E. Y. Chang, P. W. Wu, Y. Y. Wong, C. T. Chang, Y. F. Hsieh, C. C. Yu, H. Q. Nguyen, Y. C. Lin, K. L. Lin, and M. K. Hudait, Appl. Phys. Lett. 97, 042903 (2010).
6. Zuoguang Liu, Sharon Cui, Pini Shekhter, Xiao Sun, Lior Kornblum, Jie Yang, Moshe Eizenberg, K. S. Chang-Liao, and T. P. Ma, Appl. Phys. Letter. 99, 222104 (2011).
7. R. Suzuki, N. Taoka, M. Yokoyama, S. Lee, S. H. Kim et al., Appl. Phys. Lett. 100, 132906 (2012).
8. H. D. Trinh, G. Brammertz, E. Y. Chang, C. I. Kuo, C. Y. Lu, Y. C. Lin, H. Q. Nguyen, Y. Y. Wong, B. T. Tran, K. Kakushima, and H. Iwai, IEEE Electr. Dev. Lett. 32(6), 752 (2011).
9. R. Timm, A. Fian, M. Hjort, C. Thelander, E. Lind, J. N. Andersen, L.-E. Wernersson, and A. Mikkelsen, Appl. Phys. Lett., 97, 132904 (2010).
10. A. P. Kirk, M. Milojevic, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 96, 202905 (2010).
11. Jun Wu, E. Lind, R. Timm, Martin Hjort, A. Mikkelsen, and L.-E. Wernersson, Appl. Phys. Lett. 100, 132905 (2012).
12. Hau-Yu Lin, San-Lein Wu, Chao-Ching Cheng, Chih-Hsin Ko, Clement H. Wann, You-Ru Lin, Shoou-Jinn Chang, and Tai-Bor Wu, Appl. Phys. Lett. 98, 123509 (2011).
13. Digh Hisamoto, Wen-Chin Lee, Jakub Kedzierski, Hideki Takeuchi, Kazuya Asano, Charles Kuo, Erik Anderson, Tsu-Jae King, Jeffrey Bokor, and Chenming Hu, IEEE Trans. Electron Devices 47, 23202325, (DEC, 2000).
14. Jakub Kedzierski, David M. Fried et al., IEDM 2001, pp. 437440.
15. Bin Yu, Leland Chang et al., IEDM 2002, pp. 251254.
16. Byungha Shin, Jonathon B. Clemens, Michael A. Kelly, Andrew C. Kummel, and Paul C. Mclntyre, Appl. Phys. Letter. 96, 252907 (2010).
17. H. D. Trinh, E. Y. Chang, Y. Y. Wong, C. C. Yu, C. Y. Chang, Y. C. Lin, H. Q. Nguyen, and B. T. Tran, Jap JAP. 49, 111201 (2010).
18. Akihiro Ohtake, Surface Science Reports 63, 295327 (2008).
19. S. Nannarone, M. Pedio, Surface Science Reports 51, 1149 (2003).
20. Viktor Ariel-Altschul, Eliezer Finkman, and Gad Bahir, IEEE Trans. Electron Devices, 39, 13121316 (JUN, 1992). H. Ko.

Data & Media loading...


Article metrics loading...



Two high-k dielectric materials (Al O and HfO) were deposited on n-type (100) and (110) InAs surface orientations to investigate physical properties of the oxide/semiconductor interfaces and the interface trap density (D). X-ray photoelectron spectroscopy analyses (XPS) for native oxides of (100) and (110) as-grown n-InAs epi wafers show an increase in As-oxide on the (100) surface and an increase in InOx on the (110) surface. In addition, XPS analyses of high-k (Al O and HfO) on n-InAs epi show that the intrinsic native oxide difference between (100) and (110) epi surfaces were eliminated by applying conventional in-situ pre-treatment (TriMethyAluminium (TMA)) before the high-k deposition. The capacitance-voltage (C-V) characterization of HfO and Al O MOSCAPs on both types of n-InAs surfaces shows very similar C-V curves. The interface trap density (D) profiles show D minima of 6.1 × 1012/6.5 × 1012 and 6.6 × 1012/7.3 × 1012 cm−2 eV−1 for Al O and HfO, respectively for (100) and (110) InAs surfaces. The similar interface trap density (D) on (100) and (110) surface orientation were observed, which is beneficial to future InAs FinFET device with both (100) and (110) surface channel orientations present.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd