Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/4/10.1063/1.4871188
1.
1. L. F. Mei, K. M. Liang, and H. E. Wang, Catal. Commun. 8, 1187 (2007).
http://dx.doi.org/10.1016/j.catcom.2006.10.034
2.
2. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Chem. Rev. 95, 735 (1995).
http://dx.doi.org/10.1021/cr00035a013
3.
3. T. H. Jun and K. S. Lee, Mater. Lett. 64, 2287 (2010).
http://dx.doi.org/10.1016/j.matlet.2010.07.069
4.
4. W. J. Zhang, Y. Li, S. L. Zhu, and F. H. Wang, Chem. Phys. Lett. 373, 333 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00618-3
5.
5. R. Plugaru, A. Cremades, and J. Piqueras, J. Phys.: Condens. Matter 16, S261 (2004).
http://dx.doi.org/10.1088/0953-8984/16/2/031
6.
6. R. Konenkamp, R. C. Word, and M. Godinez, Nanotechnology 17, 1858 (2006).
http://dx.doi.org/10.1088/0957-4484/17/8/008
7.
7. T. Houzouji, N. Saito, A. Kudo, and T. Sakata, Chem. Phys. Lett. 254, 109 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00284-9
8.
8. Y. Zhang, X. Ma, P. Chen, D. Li, and D. Yang, Appl. Phys. Lett. 94, 061115 (2009).
http://dx.doi.org/10.1063/1.3078409
9.
9. Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, Appl. Phys. Lett. 95, 252102 (2009).
http://dx.doi.org/10.1063/1.3276547
10.
10. A. K. Ghosh, F. G. Wakim, and R. R. Addiss, Phys. Rev. 184, 979 (1969).
http://dx.doi.org/10.1103/PhysRev.184.979
11.
11. C. W. Jia, E. Q. Xie, J. G. Zhao, Z. W. Sun, and A. H. Peng, J. Appl. Phys. 100, 023529 (2006).
http://dx.doi.org/10.1063/1.2221095
12.
12. F. Montoncello, M. C. Carotta, B. Cavicchi, M. Ferroni, A. Giberti, V. Guidi, C. Malagu, G. Martinelli, and F. Meinardi, J. Appl. Phys. 94, 1501 (2003).
http://dx.doi.org/10.1063/1.1586961
13.
13. I. Fernandez, A. Cremades, and J. Piqueras, Semicond. Sci. Technol. 20, 239 (2005).
http://dx.doi.org/10.1088/0268-1242/20/2/024
14.
14. K. R. Williams, K. Gupta, and M. Wasilik, J. Microelectromech. Syst. 12, 761 (2003).
http://dx.doi.org/10.1109/JMEMS.2003.820936
15.
15. J. M. Wu and B. Huang, J. Am. Ceram. Soc. 90, 283 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2006.01334.x
16.
16. J. van den Meerakker, J. P. Metsemakers, and J. B. Giesbers, J. Electrochem. Soc. 149, C256 (2002).
http://dx.doi.org/10.1149/1.1466859
17.
17. J. M. Wu, J. Cryst. Growth 269, 347 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.05.023
18.
18. J. M. Wu, S. Hayakawa, K. Tsuru, and A. Osaka, Scr. Mater. 46, 101 (2002).
http://dx.doi.org/10.1016/S1359-6462(01)01207-6
19.
19. J. M. Wu and B. Qi, J. Am. Ceram. Soc. 90, 657 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2006.01453.x
20.
20. J. M. Wu, S. Hayakawa, K. Tsuru, and A. Osaka, Cryst. Growth Des. 2, 147 (2002).
http://dx.doi.org/10.1021/cg015535y
21.
21. A. Zhang, X. Ma, L. Jin, and D. Yang, Chinese Journal of Luminescence 32, 471 (2011). (in Chinese)
http://dx.doi.org/10.3788/fgxb20113205.0471
22.
22. N. Hosaka, T. Sekiya, and S. Kurita, J. Lumin. 72–4, 874 (1997).
http://dx.doi.org/10.1016/S0022-2313(96)00253-0
23.
23. J. Preclikova, P. Galar, F. Trojanek, S. Danis, B. Rezek, I. Gregora, Y. Nemcova, and P. Maly, J. Appl. Phys. 108, 113502 (2010).
http://dx.doi.org/10.1063/1.3512982
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4871188
Loading
/content/aip/journal/adva/4/4/10.1063/1.4871188
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4871188
2014-04-10
2016-12-11

Abstract

We report on visible and near-infrared (NIR) electroluminescence (EL) from the device based on the TiO/ +-Si heterostructure, in which the TiO film is composed of anatase and rutile phases. As the device is applied with sufficiently high forward bias with the positive voltage connecting to +-Si, the visible EL peaking at ∼600 nm along with the NIR EL centered at ∼810 nm occur simultaneously. It is proposed that the oxygen vacancies in the anatase TiO and Ti3+ defect states in the rutile TiO are the responsible centers for the visible and NIR EL, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4871188.html;jsessionid=zy-v47ly5rucoQZDqRgEzvDT.x-aip-live-03?itemId=/content/aip/journal/adva/4/4/10.1063/1.4871188&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/4/10.1063/1.4871188&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/4/10.1063/1.4871188'
Right1,Right2,Right3,