Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan, IEEE computer 36, 68 (2003).
2. S. Tang, R. M. Wallance, A. Seabaugh, and D. King-Smith, Appl. Surf. Sci. 135, 137 (1998).
3. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, Nature (London) 399, 758 (1999).
4. G. Timp, A. Agarwal, F. H. Baumann, T. Boone, M. Buonanno, R. Cirelli, V. Donnelly, M. Foad, D. Grant, M. Green et al., Tech. Dig. Int. Electron Devices Meet. 1997, p. 930.
5. C. Y. Wei, F. Adriyanto, Y. J. Lin, Y. C. Li, T. J. Huang, D. W. Chou, and Y. H. Wang, IEEE Electron Device Lett. 30, 1039 (2009).
6. L. Kang, B. H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, IEEE Electron Device Lett. 21, 181 (2000).
7. S-J Ding, H. Hu, C. Zhu, M. F. Li, S. J. Kim, J. C. Byung, D. S. H. Chan, M. B. Yu, A. Y. Du, A. Chin, and D. L. Kwong, IEEE Electron Device Lett. 25, 681 (2004).
8. N. Wu, Q. Zhang, C. Zhu, D. S. H. Chan, A. Du, N. Balasubramanian, M. F. Li, A. Chin, J. K. O. Sin, and D. L. Kwong, IEEE Electron Device Lett. 25, 631 (2004).
9. Y. Naitou, A. Ando, H. Ogiso, S. Kamiyama, Y. Nara, K. Yasutake, and H. Watanabe, J. Appl. Phys. 101, 083704 (2007).
10. H. Arimura, N. Kitano, Y. Naitou, Y. Oku, T. Minami, M. Kosuda, T. Hosoi, T. Shimura, and H. Watanabe, Appl. Phys. Lett. 92, 212902 (2008).
11. P. Blomme, J. De Vos, A. Akheyat, L. Haspeslagha, J. V. Houdt, and K. De Meye, IEEE Non-Volatile Semiconductor memory Workshop 52 (2006).
12. Z. Xu, Z. Huo, C. Zhu, Y. Cui, M. Wang, Z. Zheng, J. Liu, Y. Wang, F. Li, and M. Liu, J. Appl. Phys. 110, 104514 (2011).
13. S. W. Chang, C. L. Chen, C. J. Wang, and K. Wu, Physical and Failure Analysis of Integrated Circuits, IPFA, 1 (2008).
14. G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J. C. Phillips, Appl. Phys. Lett. 74, 2005 (1999).
15. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
16. M. Yamaguchi, T. Sakoda, H. Minakata, S. Xiao, Y. Morisaki, K. Ikeda, and Y. Mishima, IEEE Trans. Electron Devices 53, 923 (2006).
17. B. Cheng et al., IEEE Trans. Electron Devices 46, 1537 (1999).
18. G. Bersuker, C. S. Park, J. Barnett, P. S. Lysaght, P. D. Kirsch, C. D. Young, R. Choi, B. H. Lee, B. Foran, K. van Benthem, S. J. Pennycook, P. M. Lenahan, and J. T. Ryan, J. Appl. Phys. 100, 094108 (2006).
19. J. T. Ryan and P. M. Lenahan, IEEE Integrated Reliability Workshop Final Report 107 (2007).
20. D. N. Pattanayak, J. G. Poksheva, R. Downing, and L. A. Akers, IEEE Trans. Components, Hybrids, and Manufacturing Technology 5, 127 (1982).
21. H. T. Lue, T. H. Hsu, S. Y. Wang, Y. H. Hsiao, E. K. Lai, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, R. Liu, and C. Y. Lu, IEDM Electron Devices Meeting 161 (2007).
22. E. R. Fossum, IEEE Trans. Electron Devices. 44, 1689 (1997).
23. J. Y. Cheng, H. T. Lu, and J. G. Hwu, Appl. Phys. Lett. 96, 233506 (2010).
24. C. Y. Yang and J. G. Hwu, IEEE Sensor Journal 12, 2313 (2012).
25. N. Hirashita, M. Kinoshita, I. Aikawa, and T. Ajioka, Appl. Phys. Lett. 56, 451 (1990).
26. W. J. Liao, Y. L. Yang, S. C. Chuang, and J. G. Hwu, Journal of The Electrochemical Society 151(9), G549 (2004).
27. C. H. Chang, L. S. Lee, M. J. Tsai, and J. G. Hwu, International Electronic Devices and Materials Symposium 95 (2004).
28. K. J. Yang and C. Hu, IEEE Trans. Electron Devices 46, 1500 (1999).
29. C. Y. Liu, B. Y. Chen, and T. Y. Tseng, J. Appl. Phys. 95, 5602 (2004).
30. C. Y. Liu and T. Y. Tseng, Ceram. Int. 30, 1101 (2004).
31. P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. Englewood Cliffs, NJ Prentice-Hall, 346 (1997).

Data & Media loading...


Article metrics loading...



In this study, the current conduction mechanisms of structures with tandem high-k dielectric in illumination are discussed. Samples of Al/SiO/Si (S), Al/HfO/SiO/Si (H), and Al/3HfO/SiO/Si (3H) were examined. The significant observation of electron traps of sample H compares to sample S is found under the double bias capacitance-voltage (C-V) measurements in illumination. Moreover, the photo absorption sensitivity of sample H is higher than S due to the formation of HfO dielectric layer, which leads to larger numbers of carriers crowded through the sweep of V before the domination of tunneling current. Additionally, the HfO dielectric layer would block the electrons passing through oxide from valance band, which would result in less electron-hole (e-h+) pairs recombination effect. Also, it was found that both of the samples S and H show perimeter dependency of positive bias currents due to strong fringing field effect in dark and illumination; while sample 3H shows area dependency of positive bias currents in strong illumination. The non-uniform tunneling current through thin dielectric and through HfO stacking layers are importance to MOS(p) tunneling photo diodes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd