Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/4/10.1063/1.4871408
1.
1. E. H. Synge, Philos. Mag. 6, 356 (1928).
2.
2. R. F. Soohoo, J Appl. Phys. 33, 1276 (1962).
http://dx.doi.org/10.1063/1.1728690
3.
3. T. Wei, X. D. Xiang, W. G. Wallace Freedman, and P. G. Schultz, Appl. Phys. Lett. 68(24), 35063508 (1996).
http://dx.doi.org/10.1063/1.115773
4.
4. C. Gao, T. Wei, F. Duewer, Y. L. Lu, and X. D. Xiang, Appl. Phys. Lett. 71(13), 18721874 (1997).
http://dx.doi.org/10.1063/1.120444
5.
5. C. Gao and X. D. Xiang, Review of Scientific Instruments 69(11), 38463851 (1998).
http://dx.doi.org/10.1063/1.1149189
6.
6. X.-Y. Zhang, X.-C. Wang, F. Xu, Y.-G. Ma, and C. K. Ong, Review of Scientific Instruments 80(11), 114701 (2009).
http://dx.doi.org/10.1063/1.3258201
7.
7. A. N. Reznik and E. V. Demidov, J. Appl. Phys. 113(9) (2013).
http://dx.doi.org/10.1063/1.4794003
8.
8. D. E. Steinhauer, C. P. Vlahacos, S. K. Dutta, B. J. Feenstra, F. C. Wellstood, and S. M. Anlage, Appl. Phys. Lett. 72(7), 861863 (1998).
http://dx.doi.org/10.1063/1.120918
9.
9. M. Anlage, Appl. Phys. Lett. 72(7), 861863 (1998).
http://dx.doi.org/10.1063/1.120918
10.
10. Z. Y. Wang, M. A. Kelly, Z. X. Shen, L. Shao, W. K. Chu, and H. Edwards, Appl. Phys. Lett. 86(15), 153118 (2005).
http://dx.doi.org/10.1063/1.1891296
11.
11. Y. L. Lu, T. Wei, F. Duewer, Y. Q. Lu, N. B. Ming, P. G. Schultz, and X. D. Xiang, Science 276(5321), 20042006 (1997).
http://dx.doi.org/10.1126/science.276.5321.2004
12.
12. S. C. Lee, C. P. Vlahacos, B. J. Feenstra, A. Schwartz, D. E. Steinhauer, F. C. Wellstood, and S. M. Anlage, Appl. Phys. Lett. 77(26), 44044406 (2000).
http://dx.doi.org/10.1063/1.1332978
13.
13. K. Lee, H. Melikyan, A. Babajanyan, T. Sargsyan, J. Kim, S. Kim, and B. Friedman, Ultramicroscopy 109(8), 889893 (2009).
http://dx.doi.org/10.1016/j.ultramic.2009.03.013
14.
14. A. Imtiaz, T. Baldwin, H. T. Nembach, T. M. Wallis, and P. Kabos, Appl. Phys. Lett. 90(24) (2007).
15.
15. V. V. Talanov, C. Del Barga, L. Wickey, I. Kalichava, E. Gonzales, E. A. Shaner, A. V. Gin, and N. G. Kalugin, Acs Nano 4(7), 38313838 (2010).
http://dx.doi.org/10.1021/nn100493f
16.
16. A. Babajanyan, J. Kim, S. Kim, K. Lee, and B. Friedman, Appl. Phys. Lett. 89(18) (2006).
http://dx.doi.org/10.1063/1.2374681
17.
17. A. Hovsepyan, A. Babajanyan, T. Sargsyan, H. Melikyan, S. Kim, J. Kim, K. Lee, and B. Friedman, J. Appl. Phys. 106(11) (2009).
http://dx.doi.org/10.1063/1.3259366
18.
18. A. Babajanyan, H. Melikyan, J. Kim, K. Lee, M. Iwamoto, and B. Friedman, Organic Electronics 12(2), 263268 (2011).
http://dx.doi.org/10.1016/j.orgel.2010.11.016
19.
19. M. Fecioru-Morariu, S. R. Ali, C. Papusoi, M. Sperlich, and G. Guntherodt, Phys. Rev. Lett. 99(9) (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.097206
20.
20. N. N. Phuoc and C. K. Ong, J. Appl. Phys. 111(9) (2012).
21.
21. A. Imtiaz, T. Baldwin, H. T. Nembach, T. M. Wallis, and P. Kabos, Appl. Phys. Lett. 90(24) (2007).
22.
22. D. M. Pozer, Microwave engineering (3rd edition), (John Wiley & Sons, Ltd, 2005).
23.
23.Wikipedia contributors. “Copper.” Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 7 Dec. 2013. Web. 11 Dec. 2013.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4871408
Loading
/content/aip/journal/adva/4/4/10.1063/1.4871408
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4871408
2014-04-11
2016-12-05

Abstract

In this manuscript, we describe how the map of high frequency conductivity distribution of an oxide-doped anti-ferromagnetic 200 nm thin film can be obtained from the quality factor (Q) measured by a near-field scanning microwave microscope (NSMM). Finite element analysis (FEA) is employed to simulate the NSMM tip-sample interaction and obtain a curve related between the simulated quality factor (Q) and conductivity. The curve is calibrated by a standard Cu thin film with thickness of 200 nm, together with NSMM measured Q of Ag, Au, Fe, Cr and Ti thin films. The experimental conductivity obtained by the NSMM for IrMn thin films with various doped concentrations of AlO is found consistent with conventional voltammetry measurement in the same tendency. That conductivity decreases as the content of doped AlO increases. The results and images obtained demonstrate that NSMM can be employed in thin film analysis for characterization of local electrical properties of materials in a non-destructive manner and for obtaining a map of conductivity distribution on the same film.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4871408.html;jsessionid=9gyvvJzqkqfFoPofIyZTRlFO.x-aip-live-03?itemId=/content/aip/journal/adva/4/4/10.1063/1.4871408&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/4/10.1063/1.4871408&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/4/10.1063/1.4871408'
Right1,Right2,Right3,