Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. A. Malik, A. Ghaffar, and S. A. Malik, Plasma Sources Sci. Technol. 10, 82 (2001).
2. B. Sun, S. Kunitomo, and C. Igarashi, J. Phys. D: Appl. Phys. 39, 3814 (2006).
3. P. Bruggeman and C. Leys, J. Phys. D: Appl. Phys. 42, 053001 (2009).
4. J. Shi, W. Bian, and X. Yin, J. Hazard. Mater. 171, 924 (2009).
5. M. A. Malik, Plasma Chem. Plasma Process 30, 21 (2010).
6. M. Sato, T. Ohgiyama, and J. S. Clements, IEEE Trans. Ind. Applicat. 32, 106 (1996).
7. Y. Sakiyama, T. Tomai, M. Miyano, and D. B. Graves, Appl. Phys. Lett. 94, 161501 (2009).
8. Y. C. Hong, H. J. Park, B. J. Lee, W. S. Kang, and H. S. Uhm, Phys. Plasmas 17, 053502 (2010).
9. C. Lee, J. Kim, and J. Yoon, Chemosphere 82, 1135 (2011).
10. B. Sun, M. Sato, and J. S. Clements, J. Electrostatics 39, 189 (1997).
11. B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, and J. S. Chang, Ind. Eng. Chem. Res. 45, 882 (2006).
12. S. Mededovic and B. R. Locke, J. Phys. D: Appl. Phys. 40, 7734 (2007).
13. D. V. Palanker, J. M. Miller, M. F. Marmor, S. R. Sanislo, P. Huie, and M. S. Blumenkranz, Invest. Ophthalmol. Vis. Sci. 42, 2673 (2001).
14. K. R. Stalder, J. Woloszko, I. G. Brown, and C. D. Smith, Appl. Phys. Lett. 79, 4503 (2001).
15. K. R. Stalder, D. F. McMillen, and J. Woloszko, J. Phys. D: Appl. Phys. 38, 1728 (2005).
16. K. R. Stalder and J. Woloszko, Contrib. Plasma Phys. 47, 64 (2007).
17. A. Vankov and D. Palanker, J. Appl. Phys. 101, 124701 (2007).
18. J. F. Kolb, N. Scully, and D. Paithankar, Appl. Phys. Lett. 99, 053701 (2011).
19. M. J. Kirkpatrick and B. R. Locke, Ind. Eng. Chem. Res. 44, 4243 (2005).
20. F. D. Baerdemaeker, M. Simek, and C. Leys, J. Phys. D: Appl. Phys. 40, 2801 (2007).
21. W. An, K. Baumung, and H. Bluhm, J. Appl. Phys. 101, 053302 (2007).
22. Y. Hattori, S. Mukasa, S. Nomura, and H. Toyota, J. Appl. Phys. 107, 063305 (2010).
23. P. H. Ceccato, O. Guaitella, M. R. L. Gloahec, and A. Rousseau, J. Phys. D: Appl. Phys. 43, 175202 (2010).
24. J. F. Kolb, R. P. Joshi, S. Xiao, and K. H. Schoenbach, J. Phys. D: Appl. Phys. 41, 234007 (2008).
25. J. S. Clements, M. Sato, and R. H. Davis, IEEE Trans. Ind. Applicat. IA-23, 224 (1987).
26. P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, and M. Cernak, Plasma Sources Sci. Technol. 8, 258 (1999).
27. J. Qian, R. P. Joshi, E. Schamiloglu, J. Gaudet, J. R. Woodworth, and J. Lehr, J. Phys. D: Appl. Phys. 39, 359 (2006).
28. R. P. Joshi, J. F. Kolb, S. Xiao, and K. H. Schoenbach, Plasma Process. Polym. 6, 763 (2006).
29. S. M. Thagard, K. Takashima, and A. Mizuno, Plasma Chem. Plasma Process 29, 455 (2009).
30. S. Shirahata, S. Kabayama, M. Nakano, T. Miura, K. Kusumoto, M. Gotoh, H. Hayashi, K. Otsubo, S. Morisawa, and Y. Katakura, Biochem. Biophys. Res. Commun. 234, 269 (2009).
31. J. M. Jay, Modern Food Microbiology, 5th edn (Aspen Publishers, Gaithersburg, 1996) p.3959.
32. S. Okouchi, M. Suzuki, K. Sugano, S. Kagamimori, and S. Ikeda, J. Food Sci. 67, 1594 (2002).
33. H. Fujita, S. Kanazawa, K. Ohtani, A. Komiya, and T. Sato, J. Appl. Phys. 113, 113304 (2013)
34. H. Fujita, S. Kanazawa, K. Ohtani, A. Komiya, T. Kaneko and T. Sato, EPL, 105, 15003 (2014)
35. A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Vioel, New J. Phys. 11, 115025 (2009).
36. S. Katsuki, H. Akiyama, A. Abou-Ghazala, and K. H. Schoenbach, IEEE Trans. Dielectr. Electr. Insul. 9, 498 (2002).
37. T. Zhu, L. Yang, Z. Jia, and Q. Zhang, J. Appl. Phys. 104, 113302 (2008).
38. R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra (Wiley, New York, 1950).
39. G. R. Harrison, Massachusetts Institute of Technology Wavelength Tables (Technology press, Cambridge, Mass., 1939)
40. B. R. Locke and S. M. Thagard, Plasma Chem. Plasma Process. 32, 875 (2012).
41. A. A. Joshi, B. R. Lock, P. Arce, and W. C. Finney, J. Hazard. Mater. 41, 3 (1995).
42. K. Y. Shih and B. R. Locke, IEEE Trans. Plasma Sci. 39, 883 (2011).
43. K. Y. Shih and B. R. Locke, Plasma Chem. Plasma Process. 30, 1 (2010).
44. W. Stumm and J. J. Morgan, Aquatic Chemistry, 3rd edn (Wiley, New York, 1996).
45. S. Okouchi, H. Mizuno, K. Kusabuka, Y. Ishihara, and Y. Kanroji, J. Balneolog. Soc. Jpn. 48, 29 (1998).
46. S. Kato, Y. Saitoh, K. Iwai, and N. Miwa, J. Photochem. Photobiol. B. 106, 24 (2012).

Data & Media loading...


Article metrics loading...



Use of plasma in water for water treatment and medical treatment is growing and raises expectations of finding advanced functions such as an increase of biological compatibility. In the present study with a focus on the variation of oxidation-reduction potential (ORP), relationships between the electrode polarities of plasma in water and the change of water quality such as conductivity, HO concentration, dissolved hydrogen concentration, pH and ORP were revealed. Similar line spectra of radiation at the electrode tip were observed for each case of positive and negative electrode polarity. The emission intensities of OH (309 nm), Hα (656 nm), and OI (777 nm) for the positive discharge were significantly higher than those for the negative one, though the energy consumption during the discharge period of both cases was nearly the same. Positive electrode polarity was found to be more suitable than negative electrode polarity for increasing dissolved hydrogen gas and hydrogen peroxide. The ORP for the positive polarity decreased from 460 to 45 mV and that for the negative polarity decreased from 460 to 183 mV, although the pH and conductivity were not significantly changed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd