Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/4/10.1063/1.4871475
1.
1. M. A. Malik, A. Ghaffar, and S. A. Malik, Plasma Sources Sci. Technol. 10, 82 (2001).
http://dx.doi.org/10.1088/0963-0252/10/1/311
2.
2. B. Sun, S. Kunitomo, and C. Igarashi, J. Phys. D: Appl. Phys. 39, 3814 (2006).
http://dx.doi.org/10.1088/0022-3727/39/17/016
3.
3. P. Bruggeman and C. Leys, J. Phys. D: Appl. Phys. 42, 053001 (2009).
http://dx.doi.org/10.1088/0022-3727/42/5/053001
4.
4. J. Shi, W. Bian, and X. Yin, J. Hazard. Mater. 171, 924 (2009).
http://dx.doi.org/10.1016/j.jhazmat.2009.06.134
5.
5. M. A. Malik, Plasma Chem. Plasma Process 30, 21 (2010).
http://dx.doi.org/10.1007/s11090-009-9202-2
6.
6. M. Sato, T. Ohgiyama, and J. S. Clements, IEEE Trans. Ind. Applicat. 32, 106 (1996).
http://dx.doi.org/10.1109/28.485820
7.
7. Y. Sakiyama, T. Tomai, M. Miyano, and D. B. Graves, Appl. Phys. Lett. 94, 161501 (2009).
http://dx.doi.org/10.1063/1.3122148
8.
8. Y. C. Hong, H. J. Park, B. J. Lee, W. S. Kang, and H. S. Uhm, Phys. Plasmas 17, 053502 (2010).
http://dx.doi.org/10.1063/1.3418371
9.
9. C. Lee, J. Kim, and J. Yoon, Chemosphere 82, 1135 (2011).
http://dx.doi.org/10.1016/j.chemosphere.2010.11.036
10.
10. B. Sun, M. Sato, and J. S. Clements, J. Electrostatics 39, 189 (1997).
http://dx.doi.org/10.1016/S0304-3886(97)00002-8
11.
11. B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, and J. S. Chang, Ind. Eng. Chem. Res. 45, 882 (2006).
http://dx.doi.org/10.1021/ie050981u
12.
12. S. Mededovic and B. R. Locke, J. Phys. D: Appl. Phys. 40, 7734 (2007).
http://dx.doi.org/10.1088/0022-3727/40/24/021
13.
13. D. V. Palanker, J. M. Miller, M. F. Marmor, S. R. Sanislo, P. Huie, and M. S. Blumenkranz, Invest. Ophthalmol. Vis. Sci. 42, 2673 (2001).
14.
14. K. R. Stalder, J. Woloszko, I. G. Brown, and C. D. Smith, Appl. Phys. Lett. 79, 4503 (2001).
http://dx.doi.org/10.1063/1.1429752
15.
15. K. R. Stalder, D. F. McMillen, and J. Woloszko, J. Phys. D: Appl. Phys. 38, 1728 (2005).
http://dx.doi.org/10.1088/0022-3727/38/11/014
16.
16. K. R. Stalder and J. Woloszko, Contrib. Plasma Phys. 47, 64 (2007).
http://dx.doi.org/10.1002/ctpp.200710010
17.
17. A. Vankov and D. Palanker, J. Appl. Phys. 101, 124701 (2007).
http://dx.doi.org/10.1063/1.2738374
18.
18. J. F. Kolb, N. Scully, and D. Paithankar, Appl. Phys. Lett. 99, 053701 (2011).
http://dx.doi.org/10.1063/1.3619812
19.
19. M. J. Kirkpatrick and B. R. Locke, Ind. Eng. Chem. Res. 44, 4243 (2005).
http://dx.doi.org/10.1021/ie048807d
20.
20. F. D. Baerdemaeker, M. Simek, and C. Leys, J. Phys. D: Appl. Phys. 40, 2801 (2007).
http://dx.doi.org/10.1088/0022-3727/40/9/021
21.
21. W. An, K. Baumung, and H. Bluhm, J. Appl. Phys. 101, 053302 (2007).
http://dx.doi.org/10.1063/1.2437675
22.
22. Y. Hattori, S. Mukasa, S. Nomura, and H. Toyota, J. Appl. Phys. 107, 063305 (2010).
http://dx.doi.org/10.1063/1.3319616
23.
23. P. H. Ceccato, O. Guaitella, M. R. L. Gloahec, and A. Rousseau, J. Phys. D: Appl. Phys. 43, 175202 (2010).
http://dx.doi.org/10.1088/0022-3727/43/17/175202
24.
24. J. F. Kolb, R. P. Joshi, S. Xiao, and K. H. Schoenbach, J. Phys. D: Appl. Phys. 41, 234007 (2008).
http://dx.doi.org/10.1088/0022-3727/41/23/234007
25.
25. J. S. Clements, M. Sato, and R. H. Davis, IEEE Trans. Ind. Applicat. IA-23, 224 (1987).
http://dx.doi.org/10.1109/TIA.1987.4504897
26.
26. P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, and M. Cernak, Plasma Sources Sci. Technol. 8, 258 (1999).
http://dx.doi.org/10.1088/0963-0252/8/2/006
27.
27. J. Qian, R. P. Joshi, E. Schamiloglu, J. Gaudet, J. R. Woodworth, and J. Lehr, J. Phys. D: Appl. Phys. 39, 359 (2006).
http://dx.doi.org/10.1088/0022-3727/39/2/018
28.
28. R. P. Joshi, J. F. Kolb, S. Xiao, and K. H. Schoenbach, Plasma Process. Polym. 6, 763 (2006).
http://dx.doi.org/10.1002/ppap.200900022
29.
29. S. M. Thagard, K. Takashima, and A. Mizuno, Plasma Chem. Plasma Process 29, 455 (2009).
http://dx.doi.org/10.1007/s11090-009-9195-x
30.
30. S. Shirahata, S. Kabayama, M. Nakano, T. Miura, K. Kusumoto, M. Gotoh, H. Hayashi, K. Otsubo, S. Morisawa, and Y. Katakura, Biochem. Biophys. Res. Commun. 234, 269 (2009).
http://dx.doi.org/10.1006/bbrc.1997.6622
31.
31. J. M. Jay, Modern Food Microbiology, 5th edn (Aspen Publishers, Gaithersburg, 1996) p.3959.
32.
32. S. Okouchi, M. Suzuki, K. Sugano, S. Kagamimori, and S. Ikeda, J. Food Sci. 67, 1594 (2002).
http://dx.doi.org/10.1111/j.1365-2621.2002.tb08689.x
33.
33. H. Fujita, S. Kanazawa, K. Ohtani, A. Komiya, and T. Sato, J. Appl. Phys. 113, 113304 (2013)
http://dx.doi.org/10.1063/1.4795765
34.
34. H. Fujita, S. Kanazawa, K. Ohtani, A. Komiya, T. Kaneko and T. Sato, EPL, 105, 15003 (2014)
http://dx.doi.org/10.1209/0295-5075/105/15003
35.
35. A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Vioel, New J. Phys. 11, 115025 (2009).
http://dx.doi.org/10.1088/1367-2630/11/11/115025
36.
36. S. Katsuki, H. Akiyama, A. Abou-Ghazala, and K. H. Schoenbach, IEEE Trans. Dielectr. Electr. Insul. 9, 498 (2002).
http://dx.doi.org/10.1109/TDEI.2002.1024426
37.
37. T. Zhu, L. Yang, Z. Jia, and Q. Zhang, J. Appl. Phys. 104, 113302 (2008).
http://dx.doi.org/10.1063/1.3026529
38.
38. R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra (Wiley, New York, 1950).
39.
39. G. R. Harrison, Massachusetts Institute of Technology Wavelength Tables (Technology press, Cambridge, Mass., 1939)
40.
40. B. R. Locke and S. M. Thagard, Plasma Chem. Plasma Process. 32, 875 (2012).
http://dx.doi.org/10.1007/s11090-012-9403-y
41.
41. A. A. Joshi, B. R. Lock, P. Arce, and W. C. Finney, J. Hazard. Mater. 41, 3 (1995).
http://dx.doi.org/10.1016/0304-3894(94)00099-3
42.
42. K. Y. Shih and B. R. Locke, IEEE Trans. Plasma Sci. 39, 883 (2011).
http://dx.doi.org/10.1109/TPS.2010.2098052
43.
43. K. Y. Shih and B. R. Locke, Plasma Chem. Plasma Process. 30, 1 (2010).
http://dx.doi.org/10.1007/s11090-009-9207-x
44.
44. W. Stumm and J. J. Morgan, Aquatic Chemistry, 3rd edn (Wiley, New York, 1996).
45.
45. S. Okouchi, H. Mizuno, K. Kusabuka, Y. Ishihara, and Y. Kanroji, J. Balneolog. Soc. Jpn. 48, 29 (1998).
46.
46. S. Kato, Y. Saitoh, K. Iwai, and N. Miwa, J. Photochem. Photobiol. B. 106, 24 (2012).
http://dx.doi.org/10.1016/j.jphotobiol.2011.09.006
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4871475
Loading
/content/aip/journal/adva/4/4/10.1063/1.4871475
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4871475
2014-04-14
2016-09-25

Abstract

Use of plasma in water for water treatment and medical treatment is growing and raises expectations of finding advanced functions such as an increase of biological compatibility. In the present study with a focus on the variation of oxidation-reduction potential (ORP), relationships between the electrode polarities of plasma in water and the change of water quality such as conductivity, HO concentration, dissolved hydrogen concentration, pH and ORP were revealed. Similar line spectra of radiation at the electrode tip were observed for each case of positive and negative electrode polarity. The emission intensities of OH (309 nm), Hα (656 nm), and OI (777 nm) for the positive discharge were significantly higher than those for the negative one, though the energy consumption during the discharge period of both cases was nearly the same. Positive electrode polarity was found to be more suitable than negative electrode polarity for increasing dissolved hydrogen gas and hydrogen peroxide. The ORP for the positive polarity decreased from 460 to 45 mV and that for the negative polarity decreased from 460 to 183 mV, although the pH and conductivity were not significantly changed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4871475.html;jsessionid=LCfKJ84_cDenoxbrjt2N-0JH.x-aip-live-06?itemId=/content/aip/journal/adva/4/4/10.1063/1.4871475&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/4/10.1063/1.4871475&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/4/10.1063/1.4871475'
Right1,Right2,Right3,