Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. L. Hu, B. Chan, and J. W. Bush, Nature 424 (6949), 663666 (2003).
2. X. Gao and L. Jiang, Nature 432 (7013), 3636 (2004).
3. D. L. Hu and J. W. Bush, Journal of Fluid Mechanics 644, 5 (2010).
4. X.-Q. Feng, X. Gao, Z. Wu, L. Jiang, and Q.-S. Zheng, Langmuir 23 (9), 48924896 (2007).
5. S. H. Suhr, Y. S. Song, S. J. Lee, and M. Sitti, in Robotics: Science and Systems (2005), pp. 319326.
6. Y. S. Song and M. Sitti, in Robotics and Automation, 2007 IEEE International Conference on (IEEE, 2007), pp. 980984.
7. K. Suzuki, H. Takanobu, K. Noya, H. Koike, and H. Miura, in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on (IEEE, 2007), pp. 590595.
8. B. Shin, H.-Y. Kim, and K.-J. Cho, in Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on (IEEE, 2008), pp. 127131.
9. O. Ozcan, H. Wang, J. D. Taylor, and M. Sitti, in Robotics and Automation (ICRA), 2010 IEEE International Conference on (IEEE, 2010), pp. 37993804.
10. L. Wu, Z. Lian, G. Yang, and M. Ceccarelli, Int J Adv Robotic Sy 8 (4), 1017 (2011).
11. X. Zhang, J. Zhao, Q. Zhu, N. Chen, M. Zhang, and Q. Pan, ACS Applied Materials & Interfaces 3 (7), 26302636 (2011).
12. J. B. Keller, Physics of Fluids 10, 3009 (1998).
13. D. Vella, D.-G. Lee, and H.-Y. Kim, Langmuir 22 (14), 59795981 (2006).
14. J.-L. Liu, X.-Q. Feng, and G.-F. Wang, Physical Review E 76 (6), 066103 (2007).
15. K. J. Park and H.-Y. Kim, Journal of Fluid Mechanics 610, 381390 (2008).
16. D. Vella, Langmuir 24 (16), 87018706 (2008).
17. P. J. Wei, S. C. Chen, and J. F. Lin, Langmuir 25 (3), 15261528 (2008).
18. D.-G. Lee and H.-Y. Kim, Journal of Fluid Mechanics 624, 23 (2009).
19. Y. Su, B. Ji, Y. Huang, and K.-c. Hwang, Langmuir 26 (24), 1892618937 (2010).
20. P. Gao and J. J. Feng, Journal of Fluid Mechanics 668, 363383 (2011).
21. C. Jiang, S. Xin, and C. Wu, AIP Advances 1 (3), 032148 (2011).
22. Y. Su, S. He, B. Ji, Y. Huang, and K.-C. Hwang, Applied Physics Letters 99 (26), 263704 (2011).
23. X.-Y. Ji, J.-W. Wang, and X.-Q. Feng, Physical Review E 85 (2), 021607 (2012).
24. Y. S. Song, S. H. Suhr, and M. Sitti, in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (IEEE, 2006), pp. 23032310.
25. Y. S. Song and M. Sitti, in Robotics, IEEE Transactions on (2007), Vol. 23, pp. 578589.
26. L. Jiang, X. Yao, H. Li, Y. Fu, L. Chen, Q. Meng, W. Hu, and L. Jiang, Advanced Materials 22 (3), 376379 (2010).
27. X. Liu, J. Gao, Z. Xue, L. Chen, L. Lin, L. Jiang, and S. Wang, ACS nano 6(6), 56145620 (2012).
28. L. Wu, Y. Yang, G. Yang, and X. Gui, in Proceedings of 2013 Chinese Intelligent Automation Conference (Springer, 2013), pp. 349356.
29. J. W. Bush, D. L. Hu, and M. Prakash, Advances in Insect Physiology 34, 117192 (2007).

Data & Media loading...


Article metrics loading...



When an object is placed on a water surface, the air-water interface deforms and a meniscus arises due to surface tension effects, which in turn produces a lift force or drag force on the partly submerged object. This study aims to investigate the underlying mechanism of the vertical force acting on spindly cylinders in contact with a water surface. A simplified 2-D model is presented, and the profile of the curved air-water interface and the vertical force are computed using a numerical method. A parametric study is performed to determine the effects of the cylinder center distance, inclined angle, static contact angle, and radius on the vertical force. Several key conclusions are derived from the study: (1) Although the lift force increases with the cylinder center distance, cylinders with smaller center distances can penetrate deeper below the water surface before sinking, thereby obtaining a larger maximum lift force; (2) An increase in the inclined angle reduces the lift force, which can enable the lower cylinders fall more deeply before sinking; (3) While the effect of static contact angle is limited for angles greater than 90°, hydrophobicity allows cylinders to obtain a larger lift force and load capacity on water; (4) The lift force increases rapidly with cylinder radius, but an increase in radius also increases the overall size and weight of cylinders and decreases the proportion of the surface tension force. These findings may prove helpful in the design of supporting legs of biologically-inspired miniature aquatic devices, such as water strider robots.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd