Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/4/10.1063/1.4872216
1.
1. Y. Tokura and Y. Tomioka, Journal of Magnetism and Magnetic Materials 200, 1 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00352-2
2.
2. E. Daggoto, T. Hotta, and A. Moreo, Phys. Report 344, 1 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
3.
3. A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Nature 388, 50 (1997).
http://dx.doi.org/10.1038/40363
4.
4. S. Q. Liu, N. J. Wu, and A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000).
http://dx.doi.org/10.1063/1.126464
5.
5. A. Sawa, Materials Today 11, 28 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
6.
6. A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77, 139 (2000).
http://dx.doi.org/10.1063/1.126902
7.
7. R. Waser and M. Aono, Nature Materials 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
8.
8. B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. 98, 033715 (2005).
http://dx.doi.org/10.1063/1.2001146
9.
9. Kyung Min Kim, Doo Seok Jeong, and Cheol Seong Hwang, Nanotechnology 22, 254002 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254002
10.
10. A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. D. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, and C. Bill, Tech. Dig. IEDM 746 (2005).
11.
11. S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, and D.-S. Suh, Appl. Phys. Lett. 85, 5655 (2004).
http://dx.doi.org/10.1063/1.1831560
12.
12. W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, and M.-J. Tsai, Appl. Phys. Lett. 92, 022110 (2008).
http://dx.doi.org/10.1063/1.2834852
13.
13. H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M.-J. Tsai, and C. Lien, Appl. Phys. Lett. 92, 142911 (2008).
http://dx.doi.org/10.1063/1.2908928
14.
14. D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M.-J. Lee, S.-A. Seo, and I. K. Yoo, IEEE Electron. Dev. Lett. 26, 719 (2005).
http://dx.doi.org/10.1109/LED.2005.859625
15.
15. H. Sim, D. Choi, D. Lee, S. Seo, M.-J. Lee, I.-K. Yoo, and H. Hwang, IEEE Electron. Dev. Lett. 26, 292 (2005).
http://dx.doi.org/10.1109/LED.2005.846592
16.
16. K. W. Jeong, Y. H. Do, K. S. Yoon, C. O. Kim, and J. P. Hong, J. Korean Phys. Soc. 48, 1501 (2006).
17.
17. K. Bärner, X. J. Luo, X. P. Song, C. Hang, S. S. Chen, I. V. Medvedeva, and C. P. Yang, Journal of Materials Research 26, 36 (2011).
http://dx.doi.org/10.1557/jmr.2010.46
18.
18. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 85, 4073 (2004).
http://dx.doi.org/10.1063/1.1812580
19.
19. M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, Phys. Rev. Lett. 92, 178302 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.178302
20.
20. M. J. Rozenberg, M. J. Sánchez, R. Weht, C. Acha, F. Gomez-Marlasca, and P. Levy, Phys. Rev. B 81, 115101 (2006).
http://dx.doi.org/10.1103/PhysRevB.81.115101
21.
21. R. Yang, X. M. Li, W. D. Yu, X. D. Gao, D. S. Shang, X. J. Liu, X. Cao, Q. Wang, and L. D. Chen, Appl. Phys. Lett. 95, 072105 (2009).
http://dx.doi.org/10.1063/1.3203999
22.
22. H. Deng, C. P. Yang, Z. H. Zhou, H. Wang, K. Baerner, and I. V. Medvedeva, Journal of Physics and Chemistry of Solids 71, 1660 (2010).
http://dx.doi.org/10.1016/j.jpcs.2010.08.015
23.
23. S. S. Chen, C. Huang, R. L. Wang, C. P. Yang, I. V. Medevedeva, and Z. Z. Sun, Acta Physica Sinica 60, 521 (2011).
24.
24. S. S. Chen, “Study on the electrical transport properties of interface-dependent and high pressure treatment in Nd0.3Sr0.7MnO3 ceramics,” p. 43, PhD Thesis, June 2011, Hubei University.
25.
25. S. S. Chen, S. S. Chen, C. P. Yang, H. Wang, I. V. Medvedeva, and K. Baerner, Materials Science and Engineering B 172, 167 (2010).
http://dx.doi.org/10.1016/j.mseb.2010.05.004
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4872216
Loading
/content/aip/journal/adva/4/4/10.1063/1.4872216
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4872216
2014-04-18
2016-09-25

Abstract

In the majority of contributions, the electrical–pulse-induced resistance (EPIR) switching effect of perovskite manganites is thought to originate from the extrinsic interfacial Schottky barrier between the metal electrode and the surface of sample. In this work, LaCaMnO (LCMO) ceramic samples were synthesized by solid state reaction and the transport properties, especially, the EPIR effect and memristor behavior were investigated under 4-wire method using silver-glue as electrodes. Although the characteristic of LCMO shows an ohmic linearity under the 4-wire mode at room temperature, a stable and remarkable EPIR can still be observed when the pulse voltage is more than a critical value. This bulk EPIR effect is novel for rare - earth doped manganites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4872216.html;jsessionid=ML5dTlcn15D9Kqxw6vdXS1oB.x-aip-live-03?itemId=/content/aip/journal/adva/4/4/10.1063/1.4872216&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/4/10.1063/1.4872216&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/4/10.1063/1.4872216'
Right1,Right2,Right3,