Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. G. Neudeck, J. Electron. Mater. 24, 283 (1995).
2. W. J. Lu, W. C. Mitchel, G. R. Landis, T. R. Crenshaw, and W. E. Collins, Solid-State Electron. 47, 2001 (2003).
3. S. J. Yang, C. K. Kim, I. H. Noh, S. W. Jang, K. H. Jung, and N. I. Cho, Diam. Relat. Mat. 13, 1149 (2004).
4. N. Thierry-Jebali, A. Vo-Ha, D. Carole, M. Lazar, G. Ferro, D. Planson, A. Henry, and P. Brosselard, Appl. Phys. Lett. 102, 212108 (2013).
5. W. P. Leroy, C. Detavernier, R. L. Van Meirhaeghe, and C. Lavoie, J. Appl. Phys. 101, 053714 (2007).
6. R. F. Li, Z. N. Guo, J. J. Yang, X. P. Zeng, and W. X. Yuan, Mon. Chem. 143, 1329 (2012).
7. S. Y. Han, K. H. Kim, J. K. Kim, H. W. Jang, K. H. Lee, N. K. Kim, E. D. Kim, and J. L. Lee, Appl. Phys. Lett. 79, 1816 (2001).
8. S. Y. Han, J. Y. Shin, B. T. Lee, and J. L. Lee, J. Vac. Sci. Technol. B 20, 1496 (2002).
9. G. Oskam, P. C. Searson, and M. W. Cole, Appl. Phys. Lett. 76, 1300 (2000).
10. J. Rogowski and A. Kubiak, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 177, 1318 (2012).
11. J. H. Park and P. H. Holloway, J. Vac. Sci. Technol. B 23, 486 (2005).
12. S. Tsukimoto, T. Sakai, T. Onishi, K. Ito, and M. Murakami, J. Electron. Mater. 34, 1310 (2005).
13. M. R. Jennings, A. Perez-Tomas, M. Davies, D. Walker, L. Zhu, P. Losee, W. Huang, S. Balachandran, O. J. Guy, J. A. Covington, T. P. Chow, and P. A. Mawby, Solid-State Electron. 51, 797 (2007).
14. M. Siad, M. Abdesselam, N. Souami, and A. C. Chami, Appl. Surf. Sci. 257, 10737 (2011).
15. K. Buchholt, R. Ghandi, M. Domeij, C. M. Zetterling, J. Lu, P. Eklund, L. Hultman, and A. Lloyd Spetz, Appl. Phys. Lett. 98, 042108 (2011).
16. T. Ohyanagi, Y. Onose, and A. Watanabe, J. Vac. Sci. Technol. B 26, 1359 (2008).
17. K. H. Jung, Y. J. Sutou, and J. Koike, Thin Solid Films 520, 6922 (2012).
18. M. Siad, M. Abdesslam, and A. C. Chami, Appl. Surf. Sci. 258, 6819 (2012).
19. L. L. Wu, T. K. Yao, Y. C. Wang, J. W. Zhang, F. R. Xiao, and B. Liao, J. Alloy. Compd. 548, 60 (2013).
20. S. Cichon, P. Machac, B. Barda, V. Machovic, and P. Slepicka, Thin Solid Films 520, 4378 (2012).
21. P. Machac, B. Barda, and M. Kudrnova, Microelectron. Eng. 87, 274 (2010).

Data & Media loading...


Article metrics loading...



A sandwich structure of Ni/V/4H-SiC was prepared and annealed at different temperatures from 650 °C to 1050 °C. The electrical properties and microstructures were characterized by transmission line method, X-ray diffraction, Raman spectroscopy and transmission electron microscopy. A low specific contact resistance of 3.3 × 10-5 Ω·cm2 was obtained when the Ni/V contact was annealed at 1050 °C for 2 min. It was found that the silicide changed from Ni Si to Ni Si with increasing annealing temperature, while the vanadium compounds appeared at 950 °C and their concentration increased at higher annealing temperature. A schematic diagram was proposed to explain the ohmic contact mechanism of Ni/V/4H-SiC structure.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd