Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/4/10.1063/1.4873156
1.
1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
2.
2. X. Zhang and Z. Liu, Nat. Mater. 7, 435 (2008).
http://dx.doi.org/10.1038/nmat2141
3.
3. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
http://dx.doi.org/10.1126/science.1058847
4.
4. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.137404
5.
5. V. M. Shalaev, Nature Photon. 1, 41 (2007).
http://dx.doi.org/10.1038/nphoton.2006.49
6.
6. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
7.
7. S. A. Ramakrishna, J. B. Pendry, M. C. Wiltshire, and W. J. Stewart, J. Mod. Opt. 50, 1419 (2003).
http://dx.doi.org/10.1080/09500340308235215
8.
8. M. Noginov, M. Lapine, V. Podolskiy, and Y. Kivshar, Opt. Express. 21, 14895 (2013).
http://dx.doi.org/10.1364/OE.21.014895
9.
9. B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B. 74, 115116 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.115116
10.
10. B. Zeng, X. Yang, C. Wang, Q. Feng, and X. Luo, J. Opt. 12, 035104 (2010).
http://dx.doi.org/10.1088/2040-8978/12/3/035104
11.
11. Y. Zhao, A. A. Nawaz, S. S. Lin, Q. Hao, B. Kiraly and T. J. Huang, J. Phys. D: Appl. Phys. 44, 415101 (2011).
http://dx.doi.org/10.1088/0022-3727/44/41/415101
12.
12. Y. Liu, G. Bartal, and X. Zhang, Opt. Express. 16, 15439 (2008).
http://dx.doi.org/10.1364/OE.16.015439
13.
13. X. B. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, Phys. Rev. Lett. 97, 073901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.073901
14.
14. T. Xu, A. Agrawal, M. Abashin, K. J. Chau and H. J. Lezec, Nature. 497, 470 (2013).
http://dx.doi.org/10.1038/nature12158
15.
15. N. Fang, H. Lee, and X. Zhang, Science. 308, 534 (2005).
http://dx.doi.org/10.1126/science.1108759
16.
16. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, Opt. Express. 13, 2127 (2005).
http://dx.doi.org/10.1364/OPEX.13.002127
17.
17. E. Verhagen, R. Waele, L. Kuipers, and A. Polman, Phys. Rev. Lett. 105, 223901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.223901
18.
18. Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic Press, London, 1985).
19.
19. W. T. Lu and S. Sridhar, Phys. Rev. B. 77, 233101 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.233101
20.
20. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science, 305, 788 (2004).
http://dx.doi.org/10.1126/science.1096796
21.
21. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. Anantha Ramakrishna, and J. B. Pendry, Applied Physics Letters 82, 1506 (2003).
http://dx.doi.org/10.1063/1.1554779
22.
22. H. Shin and S. Fan, Applied Physics Letter 89, 151102 (2006).
http://dx.doi.org/10.1063/1.2360187
23.
23. H. Shin and S. Fan, Phys. Rev. Lett. 96, 073907 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.073907
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/4/10.1063/1.4873156
Loading
/content/aip/journal/adva/4/4/10.1063/1.4873156
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/4/10.1063/1.4873156
2014-04-22
2016-12-07

Abstract

For planar structured hyperbolic metamaterial, the shortest wavelength achievable for negative refraction is often limited by dielectric layers, which are usually wide band gap semiconductors that absorb light strongly at wavelength shorter than their absorption edge. Here we proposed that using SiO may break such limitation based on effective medium theory. Through calculation and simulation we demonstrated broad angle negative refraction by a planar Ag/SiO layered structure at wavelength down to 326 nm. Its imaging and focusing abilities were also presented. The lower limit of wavelength here is defined by the property of silver, whose permittivity turns positive below 324 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/4/1.4873156.html;jsessionid=qIu0MMuj_V_Che6REyxT_D8c.x-aip-live-06?itemId=/content/aip/journal/adva/4/4/10.1063/1.4873156&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/4/10.1063/1.4873156&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/4/10.1063/1.4873156'
Right1,Right2,Right3,