Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. J. Wang, Y. Geng, Q. B. Zheng, and J. K. Kim, Carbon 8, 1815 (2010).
2. A. Akturk and N. Goldsman, J. Appl. Phys. 103, 053702 (2008).
3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
4. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, and M. S. Dresselhaus, J. Kong, Nano Letters 9, 30 (2009).
5. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
6. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, ACS Nano. 5, 6069 (2011).
7. Y. Kim, W. Song, S. Y. Lee, C. Jeon, W. Jung, M. Kim, and C. Y. Park, Appl. Phys. Lett. 8, 263106 (2011).
8. J. Kim, M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, and S. Iijima, Appl. Phys. Lett. 8, 091502 (2011).
9. G. Kalita, K. Wakita, and M. Umeno, RSC Adv. 8, 2815 (2012).
10. S. H. Chan, S. H. Chen, W. T. Lin, M. C. Li, Y. C. Lin, and C. C. Kuo, Nanoscale Res. Lett. 8, 285 (2013).
11. A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. van Tendeloo, A. Vanhulsel, and C. Van Haesendonck, Nanotechnology 19, 305604 (2008).
12. J. H. Kim, E. J. D. Castro, Y. G. Hwang, and C. H. Lee, J. Korean Phys. Soc. 58(1), 53 (2011).
13.CYRANNUS® I. European Patent 0872164, USA Patent 6198224, 2001.
14. W. Zhang, P. Wu, Z. Li, and J. Yang, J. Phys. Chem. 115, 17782 (2011).
15. Y. Zhang, Z. Li, P. Kim, L. Zhang, and C. Zhou, ACS Nano 6, 126 (2012).
16. L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, Phys. Rep. 473, 51 (2009).
17. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
18. C. Casiraghi, S. Pisana, K. Novoselov, A. Geim, and A. Ferrari, Appl. Phys. Lett. 91, 233108 (2007).
19. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Nano Lett. 10, 751 (2010).
20. M. M. Lucchese, F. Stavale, E. H. Martins Ferreira, C. Vilani, M. V. O. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, Carbon 48, 1592 (2010).
21. L. G. Cançado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Nano Lett. 11, 3190 (2011).
22. F. Tuinstra and J. Koenig, J. Chem. Phys. 53, 1126 (1970).
23. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. Eklund, Nano Lett. 6, 2667 (2006).
24. A. Jorio, M. Dresselhaus, R. Saito, G. Dresselhaus, Raman Spectroscopy in Graphene Related Systems, 1st ed. (Wiley, Weinheim, 2010).
25. Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, Appl. Phys. Lett. 92, 043121 (2008).
26. Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 4, 273 (2010).
27. A. C. Ferrari, Science direct, Solid State Communications 143, 47 (2007).
28. D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009).
29. A. Gao, P. J. Rizo, E. Zoethout, L. Scaccabarozzi, C. J. Lee, V. Banine, and F. Bijkerk, J. Appl. Phys. 114, 044313 (2013).
30. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 (2009).
31. S. Nunomura and M. Kondo, J. Appl. Phys. 102, 093306 (2007).
32. G. Diankov, M. Neumann, and D. Goldhaber-Gordon, ACS Nano 7, 1324 (2013).
33. A. Cortijo and M. Vozmediano, Nuclear Physics B 763, 293 (2007).
34. F. Hao, D. Fang, and Z. Xu, Appl. Phys. Lett. 99, 041901 (2011).
35. D. Boukhvalov and M. Katsnelson, Nano letters 8, 4373 (2008).
36. K. Kim, Z. Lee, B. D. Malone, K. T. Chan, B. Alemán, W. Regan, W. Gannett, M. F. Crommie, M. L. Cohen, and A. Zettl, Phys. Rev. B 83, 245433 (2011).
37. C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, and L. Wirtz, Appl. Phys. Lett. 91, 241907 (2007).

Data & Media loading...


Article metrics loading...



A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm2. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd