Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 10391263 (1998).
2. E. Dagotto, Science 309, 257 (2005).
3. K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S. Aizaki, A. Fujimori, and M. Oshima, Phys. Rev. Lett. 104, 147601 (2010).
4. K. Yoshimatsu, K. Horiba, H. Kumigashira, T. Yoshida, A. Fujimori, and M. Oshima, Science 333, 319 (2011).
5. J. Liu, S. Okamoto, M. van Veenendaal, M. Kareev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Phys. Rev. B 83, 161102 (2011).
6. A. V. Boris, Y. Matiks, E. Benckiser, A. Frano, P. Popovich, V. Hinkov, P. Wochner, M. Castro-Colin, E. Detemple, V. K. Malik, C. Bernhard, T. Prokscha, A. Suter, Z. Salman, E. Morenzoni, G. Cristiani, H.-U. Habermeier, and B. Keimer, Science 332, 937 (2011).
7. S. J. May, T. S. Santos, and A. Bhattacharya, Phys. Rev. B 79, 115127 (2009).
8. S. J. Moon, H. Jin, K. W. Kim, W. S. Choi, Y. S. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, and T. W. Noh, Phys. Rev. Lett. 101, 226402 (2008).
9. V. V. Poltaverts, K. A. Lokshin, S. Dikmen, M. Croft, T. Egami, and M. Greeblatt, J. Am. Chem. Soc. 128, 9050 (2006).
10. V. V. Poltavets, M. Greenblatt, G. H. Fecher, and C. Felser, Phys. Rev. Lett. 102, 046405 (2009).
11. V. Pardo and W. E. Pickett, Phys. Rev. B 83, 245128 (2011).
12. S. Sarkar, I. Dasgupta, M. Greenblatt, and T. Saha-Dasgupta, Phys. Rev. B 84, 180411 (2011).
13. V. V. Poltavets, K. A. Lokshin, A. H. Nevidomskyy, M. Croft, T. A. Tyson, J. Hadermann, G. Van Tendeloo, T. Egami, G. Kotliar, N. ApRoberts-Warren, A. P. Dioguardi, N. J. Curro, and M. Greenblatt, Phys. Rev. Lett. 104, 206403 (2010).
14. N. ApRoberts-Warren, A. P. Dioguardi, V. V. Poltavets, M. Greenblatt, P. Klavins, and N. J. Curro, Phys. Rev. B 83, 014402 (2011).
15. V. Pardo and W. E. Pickett, Phys. Rev. Lett. 105, 266402 (2010).
16. M. A. Hayward, M. A. Green, M. J. Rosseinsky, and J. Sloan, J. Am. Chem. Soc. 121, 8843 (1999).
17. K.-W. Lee and W. E. Pickett, Phys. Rev. B 70, 165109 (2004).
18. V. I. Anisimov, D. Bukhvalov, and T. M. Rice, Phys. Rev. B 59, 7901 (1999).
19. T. Liu, G. Zhang, X. Zhang, T. Jia, Z. Zeng, and H. Q. Lin, J. Phys.: Condens. Matter 24, 405502 (2012).
20. H. Wu, New J. Phys. 15, 023038 (2013).
21. N. apRoberts Warren, J. Crocker, A. P. Dioguardi, K. R. Shirer, V. V. Poltavets, M. Greenblatt, P. Klavins, and N. J. Curro, Phys. Rev. B 88, 075124 (2013).
22. X.-B. Feng and N. M. Harrison, Phys. Rev. B 69, 132502 (2004).
23. K. Schwarz and P. Blaha, Comput. Mater. Sci. 28, 259 (2003).
24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
25. A. G. Petukhov, I. I. Mazin, L. Chioncel, and A. I. Lichtenstein, Phys. Rev. B 67, 153106 (2003).
26. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
27. V. Pardo and W. E. Pickett, Phys. Rev. B 85, 045111 (2012).
28. J. Fontcuberta, G. Longworth, and J. B. Goodenough, Phys. Rev. B 30, 6320 (1984).

Data & Media loading...


Article metrics loading...



Low-valence layered nickelates are a structural analog to the superconducting cuprates and possess interesting properties. In this work, we have systematically studied the electronic structure of La Ni O using first-principles calculations. Our results reveal that the Ni-3 3 2 2 orbital state is active and evolves from discrete molecular levels to a continuous solid band and its filling varies as the dimensionality (or ) increases. The two-dimensional (2D) La Ni O and La Ni O are thus found to have a molecular insulating state. In contrast, the 3D LaNiO is metallic and its 3 2 2 band surprisingly becomes 3D due to the Ni-La hybridization, and the La-5 orbital also forms a 2D metallic band. Therefore, La Ni O is a dimensionality-controlled insulator-metal crossover system.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd