Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
2. W. Tress, K. Leo, and M. Riede, “Influence of Hole-Transport Layers and Donor Materials on Open-Circuit Voltage and Shape of I-V Curves of Organic Solar Cells,” Advanced Functional Materials 21, 21402149 (2011).
3. C. M. Ramsdale, J. A. Barker, A. C. Arias, J. D. MacKenzie, R. H. Friend, and N. C. Greenham, “The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices,” Journal of Applied Physics 92(8), 4266 (2002).
4. C. Uhrich, D. Wynands, S. Olthof, M. K. Riede, K. Leo, S. Sonntag, B. Maennig, and M. Pfeiffer, “Origin of open circuit voltage in planar and bulk heterojunction organic thin-film photovoltaics depending on doped transport layers,” Journal of Applied Physics 104(4), 043107 (2008).
5. W. Tress, “Open circuit voltage and IV curve shape of ZnPc:C60 solar cells with varied mixing ratio and hole transport layer,” Journal of Photonics for Energy 1, 011114 (2011).
6. E. Siebert-Henze, V. G. Lyssenko, J. Fischer, M. Tietze, R. Brueckner, T. Menke, K. Leo, and M. K. Riede, “Electroabsorption studies of organic p-i-n solar cells: Increase of the built-in voltage by higher doping concentration in the hole transport layer,” Organic Electronics 15, 563568 (2014).
7. W. Tress, K. Leo, and M. Riede, “Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: A drift-diffusion simulation study,” Physical Review B 85, 111 (2012).
8. R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. DeMello, D. D. Bradley, and J. Nelson, “Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells,” Advanced Energy Materials 3, 718723 (2013).
9. I. Hiromitsu, S.-i. Mada, A. Inoue, Y. Yoshida, and S. Tanaka, “Internal Electric Field and Photocurrent of Polymer/Perylene Heterojunction Solar Cell,” Japanese Journal of Applied Physics 46, 72417246 (2007).
10. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells,” Advanced Functional Materials 11, 374380 (2001).<374::AID-ADFM374>3.0.CO;2-W
11. U. Rau, G. Kron, and J. Werner, “‘Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar Cells Comparison of Electrolyte and Solid-State Devices’. On the Photovoltaic Action in pn-Junction,” The Journal of Physical Chemistry B 107, 1354713550 (2003).
12. S. Olthof, R. Meerheim, M. Schober, and K. Leo, “Energy level alignment at the interfaces in a multilayer organic light-emitting diode structure,” Physical Review B 79(24), 17 (2009).
13. M. Tietze, L. Burtone, M. Riede, B. Lüssem, and K. Leo, “Fermi level shift and doping efficiency in p-doped small molecule organic semiconductors: A photoelectron spectroscopy and theoretical study,” Physical Review B 86, 035320 (2012).
14. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chemical reviews 107, 1233 (2007).
15. B. Maennig, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, N. Sariciftci, I. Riedel, V. Dyakonov, J. Parisi, and J. Drechsel, “Organic p-i-n solar cells,” Applied Physics A: Materials Science & Processing 79, 114 (2004).
16. T. Menke, D. Ray, J. Meiss, K. Leo, and M. Riede, “In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60,” Applied Physics Letters 100(9), 093304 (2012).
17. S. Olthof, W. Tress, R. Meerheim, B. Luessem, and K. Leo, “Photoelectron spectroscopy study of systematically varied doping concentrations in an organic semiconductor layer using a molecular p-dopant,” Journal of Applied Physics 106(10), 103711 (2009).
18. G. Weiser and A. Horváth, “Electroabsorption spectroscopy on π-conjugated polymers,” in Primary Photoexcitations in Conjugated Polymers: Molecular Exciton versus Semiconductor Band Model (N. S. Sariciftci, ed.), pp. 318362, (Singapore: World Scientific Publishing, 1997).
19. L. Sebastian and G. Weiser, “Charge Transfer Transitions in solid tetrancene and pentacene studied by electroabsorption,” Chemical Physics 61, 125135 (1981).
20. P. A. Lane, J. Rostalski, C. Giebeler, S. J. Martin, D. D. C. Bradley, and D. Meissner, “Electroabsorption studies of phthalocyanine/perylene solar cells,” Solar Energy Materials 63, 313 (2000).
21. P. A. Lane, C. Giebeler, S. A. Whitelegg, S. J. Martin, A. Campbell, J. Rostalski, D. Meissner, and D. D. C. Bradley, “Studies of the internal electric field in organic light emitting diodes and solar cells by electroabsorption spectroscopy,” Proceedings of the SPIE conference 3939, 144 (2000).
22. W. Stampor, “Electroabsorption study of vacuum-evaporated films of Pt(II)octaethylporphyrin,” Chemical Physics 305, 7784 (2004).
23. W. Stampor, “Internal electric fields in vacuum-evaporated organic films as studied by electroabsorption spectroscopy,” Chemical Physics 334(1–3), 216 (2007).
24. E. Siebert-Henze, V. G. Lyssenko, R. Brückner, M. K. Riede, and K. Leo, “Electroabsorption studies of organic p-i-n solar cells: evaluating the built-in voltage,” in Proceedings of the 2013 MRS Fall meeting, 2013.
25. M. Pfeiffer, A. Beyer, T. Fritz, and K. Leo, “Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study,” Applied Physics Letters 73(22), 3202 (1998).
26. M. Limpinsel, A. Wagenpfahl, M. Mingebach, C. Deibel, and V. Dyakonov, “Photocurrent in bulk heterojunction solar cells,” Physical Review B 81, 16 (2010).

Data & Media loading...


Article metrics loading...



We investigate the influence of the built-in voltage on the performance of organic bulk heterojuction solar cells that are based on a p-i-n structure. Electrical doping in the hole and the electron transport layer allows to tune their work function and hence to adjust the built-in voltage: Changing the doping concentration from 0.5 to 32 wt% induces a shift of the work function towards the transport levels and increases the built-in voltage. To determine the built-in voltage, we use electroabsorption spectroscopy which is based on an evaluation of the spectra caused by a change in absorption due to an electric field (Stark effect). For a model system with a bulk heterojunction of BF-DPB and C, we show that higher doping concentrations in both the electron and the hole transport layer increase the built-in voltage, leading to an enhanced short circuit current and solar cell performance.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd